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1 Introduction 

1.1 About this booklet 

This booklet is a user guide for experimenters who intend to carry out an animal trial 

and seek to obtain ethics approval from regulatory authorities. It is also meant to aid 

scientists and biometricians who have to judge statistical soundness and efficiency of 

a trial in order to give a proper ethical evaluation. 

Parts of this booklet have been published in Piper et al. ”Statistical review of animal 

trials - A guideline” (Piper et al. (2022)). 

In order to accompany ethics approval for animal trials, we developed a biometric form 

to be filled and handed in with the proposal at the local authority of animal welfare. 

The form is shown on the next page in English language and it has already been in use 

in German language by the local authority of animal welfare in Berlin, Germany, since 

beginning of 2020. The German version is available online at 

https://www.berlin.de/lageso/gesundheit/veterinaerwesen/tierschutz/ 

versuchsvorhaben/. 

The booklet is composed of 8 chapters subsequently addressing each section in the 

biometric planning form. In the overview of this form sheet on the next page, the 

reader may click directly on each referenced number to be directly forwarded to the 

corresponding chapter within this booklet. An example template was published in 

Piper et al. (2022). 

As it is crucial to distinguish between exploratory and confirmatory research already in 

the planning phase, we will briefly explain the two concepts in the following subsection 

1.4. For better understanding and illustration we provide example text blocks for two 

typical scenarios of animal trials: i) an exploratory setting and ii) a confirmatory setting 

which are introduced at the end of the introduction in subsections 1.4.1 and 1.4.2. In 

the appendix (see chapter 9) we provide a brief glossary of statistical terms. 

1.2 Recommended resources 

An overview of very useful links is hosted under 

https://charite3r.charite.de/3r_service/charite_3r_toolbox/. 

1.3 Biometric Planning Form 

Experiment number: 

Animal species: 

Number of animals per investigated group in this experiment: 

https://www.berlin.de/lageso/gesundheit/veterinaerwesen/tierschutz/versuchsvorhaben/
https://www.berlin.de/lageso/gesundheit/veterinaerwesen/tierschutz/versuchsvorhaben/
https://www.berlin.de/lageso/gesundheit/veterinaerwesen/tierschutz/versuchsvorhaben/
https://www.berlin.de/lageso/gesundheit/veterinaerwesen/tierschutz/versuchsvorhaben/
https://charite3r.charite.de/3r_service/charite_3r_toolbox/
https://charite3r.charite.de/3r_service/charite_3r_toolbox/
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Total number of animals (including dropouts) in this experiment: 

1. Goal of the (sub)-trial (including research question or hypothesis and indicating 

whether this is an exploratory or confirmatory experiment or a technical pilot 

study): →see chapter 2 

2. Primary endpoint of the experiment, with unit of measurement, measurement 

method and time of measurement:→see chapter 3 

3. Description of the study design, e.g. which groups are compared, which 

interventions are performed, when is the outcome measured? →see chapter 4 

(a) Design (if possible with flowchart): 

(b) Blinding (e.g. double-blind or evaluation blinded; if no blinding is done, 

please explain why): 

(c) Randomization (which type; if no randomization is used, please explain 

why): 

4. Sample size calculation: →see chapter 5 

(a) For a confirmatory trial: →see chapter 5.2 (i) Statistical test used for sample 

size calculation: 

(ii) Significance level (α) and power (1-β), one-sided or two-sided test: 

(iii) Biologically relevant effect size (please do not only provide the effect 

size, but also which data(value) would lead to this effect size, e.g. 

desired/expected mean value and variance/standard deviation per 

group, including a reference) 

(iv) Calculated sample size per group (including explanation with respect 

to i-iii): 

(v) The required number of reserved animals/dropouts due to premature 

death, faulty interventions, etc. (Specify a dropout rate and the 

required absolute number of animals): 

(vi) Software used for sample size calculation (including version number): 

(b) Exploratory trial/pilot study or orientation test/technical preliminary test: 

→see chapter 5.1 

(i) Sample size calculation explanation (e.g. feasibility, precision of 

estimation that can be achieved with given sample size) 

(ii) The required number of reserved animals/dropouts due to premature 

death, faulty interventions, etc. (Specify a dropout rate and the 

required absolute number of animals): 

(iii) Software used for sample size calculation (including version number): 
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5. Statistical analyses: (e.g.: type of statistical modelling, adjustment for potential 

bias, adjustment for multiple testing, secondary analysis, handling of missing 

values?) →see chapter 6 

6. Is there a logical or sequential order of the experiments planned ? (e.g. 

prerequisites that have to be fulfilled and consequences on any of the following 

experiments that can arise) →see chapter 7 

7. Summary table for the sample size planning: Table 1→see chapter 8 Table 1: 

Tabulated overview of groups, effect sizes and sample size calculations 

Group 
Primary 

Endpoint 

Expected Effect 
(e.g., means 

with standard 

deviations) 

Reference for 

expected effect 
Effect Size 

Drop-Out 

Rate 

Sample Size 

(including 

Dropouts) 

A: control 

B: treatment 

weight [g] 
after 

3 weeks 

A: mean 100g 
(SD: 20g) 

B: mean 120g 

(SD: 20g) 

Name et al. 

(2020) 
Cohen’s d=1 25% 

25% 
17/0.75≈23 

17/0.75≈23 

. . . . . . . 

 
1.4 Exploratory versus confirmatory research 

There are two modes of research, exploration and confirmation, which have to be 

distinguished conceptually and practically (Kimmelman et al. (2014); Dirnagl (2019)). 

They differ substantially in their methodology and in the interpretation of their 

findings, and therefore also require different approaches to the statistical planning of 

the experiment. ”While exploration may start without any hypothesis (’unbiased’), a 

proper hypothesis is the obligatory starting point of any confirmation.” (Dirnagl 

(2019)). The vast majority of animal trials is in the area of exploratory experiments, but 

the number of confirmatory trials has been increasing, recently. 

An exploratory experiment aims at investigating physiological or pathophysiological 

mechanisms or potential drug development (Dirnagl (2019)). There does not need to 

be a pre-specified effect or hypothesis before observing the experiment. Instead, the 

goal in exploratory research is to generate new hypotheses and estimate effect sizes, 

which have to be tested and confirmed later. Thus, if no prior data and reliable 

knowledge about the desired effect sizes exist, experiments usually fall into the 

category of exploratory research. Typical study examples from exploratory research 

aim estimation (possibly descriptive) estimation of effects (”pilot study”), exploration 

of potential biomarkers, assessing feasibility or dose-finding, respectively. There might 

already be a pre-defined hypothesis though not enough prior knowledge for an 

adequate sample size planning. Previous evidence might exist but it is potentially 

associated with high uncertainty due to low number of experimental units. 

A confirmatory experiment is based on previously found differences, in order to 

confirm an expected effect, and tests a specific, pre-defined hypothesis. The statistical 

properties of the primary hypothesis test need to be clearly described, so that the 
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experiment is adequately powered. In this way, the planning is analogue to a clinical 

trial. Confirmatory experiments can be replications of previous experiments if there is 

a clear rationale what additional evidence will be generated. Confirmatory 

experiments are further strengthened by describing the converging and discriminant 

evidence that is generated. That is, what additional measurements will strengthen the 

hypothesised causal relationship? What measurement instruments yield similar 

findings (mRNA upregulated → higher protein concentration) and what experiments 

are needed to rule out viable alternatives. 

1.4.1 Specific exploratory example 

A (fictive) example for an exploratory experiment in fundamental research is to 

investigate the influence of a growth factor GX on fracture healing. No specific 

preliminary data are available in the specific type of mice used, but there are hints 

from other models or exvivo experiments that increased GX levels are associated with 

reduced bone formation and GX regulation might be used to influence fracture healing. 

In order to capture dynamics of the healing process, bone fraction of the callus volume 

shall be measured by µCT after 3, 14 and 21 days and compared to GX depleted control 

animals. This will be explored in two different strains of mice that model fracture 

healing in an immunologically young (strain A) or an experienced adaptive immune 

system (strain B), respectively. See figure 1 for an illustration of the design. In addition 

histological and immunohistological analyses, FACS analysis and evaluations of 

immunologically relevant organs such as spleen, lymph nodes and bone marrow are 

planned so that animals have to be killed at each time point. 

 

Figure 1: Design flowchart for our exploratory example: A 2x2x3 Design. Two strains of 

mice in two treatment groups (GX treatment/ GX depleted controls) are 

measured in three subgroups on day 3, 14 and 21 after osteotomy, 

respectively. Crossed eyes symbolize the investigator is blinded to treatment 

allocation. Build with www.lucidchart.com. 

http://www.lucidchart.com/
http://www.lucidchart.com/
http://www.lucidchart.com/


7 

1.4.2 Specific confirmatory example 

A (fictive) example for a confirmatory study in preclinical research has the goal of 

confirming a previously found effect with higher reliability. 

To study hypertrophy and subsequent heart failure (HF) a transverse aortic constriction 

(TAC) surgery is conducted in mice. In this HF model, an increase of a certain 

metabolite has been observed post TAC. In order to decrease the metabolite a catalyst 

is over-expressed via adeno-associated virus (AAV) mediated gene transfer. The extent 

of HF is measured via left ventricular ejection fraction (LVEF), which is the primary 

endpoint. The 2x3 design consists of the operation treatment (TAC/sham) and the 

vector treatment (AAV+gene, AAV wo gene, saline) resulting in 6 groups (5 control 

groups). The hypothesis is that the specific catalyst will reduce the metabolite and thus 

increase LVEF. There is already data from an initial study consisting of 8 mice in the 

TAC AAV+gene group and 8 mice in the AAV wo gene group. In this study only male 

mice were tested. Goal of the current experiment is to confirm previous findings, add 

also female mice, add complete control groups (for the full 2x3x2 design). 

 

Figure 2: Design flowchart for our confirmatory example: A 2x3x2 Design: Two 

operation modes (sham/TAC) are measured in three treatments (AAV+gene, 

AAV wo gene, saline) in both sexes (male/female). Crossed eyes symbolize 

the investigator is blinded to treatment allocation. Build with 

www.lucidchart.com. 

2 Research question 

As described previously in chapter 1.4, methodology substantially differs between 

exploratory and confirmatory experiments. The specific research question or aim of an 

experiment determines whether it is exploratory or confirmatory in nature. It is 

therefore essential to define the research question as explicit and precise as possible 

before any further elaborated planning of the experiment. A common problem is that 

research questions are stated in a too general way. In order to perform any meaningful 

http://www.lucidchart.com/
http://www.lucidchart.com/
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statistical sample size planning, it must be possible to translate the research question 

into a specific statistical hypothesis. Though one can have the same hypothesis for an 

exploratory as for a confirmatory experiment, only the letter allows confirmatory 

generalization of results of a statistical test (statistical significance) if adequate sample 

size planning has been done before. The p-value of exploratory experiments does not 

allow confirmatory generalization of results. 

2.1 Examples 

2.1.1 Specific exploratory example 

The aim of this animal trial is to analyse the influence of the growth factor GX on 

fracture healing with special consideration of the immunological experience of the 

adaptive immune system. 

This is an exploratory study aiming at a first quantification of effect sizes. The specific 

exploratory hypothesis of this experiment is: GX administration in the initial healing 

phase increases bone fraction of the callus volume at day 21 compared to control mice 

depleting GX using antibodies. 

2.1.2 Specific confirmatory example 

The aim of this confirmatory animal trial is to validate that the specific catalyst will 

reduce the metabolite and thus increase the left ventricular ejection fraction (LVEF) 

measured via echocardiography. The specific hypothesis to be tested is: LVEF 

measured 20 days after virus injection is higher in TAC AAV+ mice compared to TAC 

AAV- mice. Moreover, we would like to explore that the findings are also valid in 

female mice, and that the findings persist in complete controls. 

3 Primary endpoint(s) 

All outcome measurements (= endpoints) should be clearly defined a priori (see ARRIVE 

guideline: item 6 Percie du Sert et al. (2020)). The primary endpoint is the outcome 

measure that is used to quantify the effect of main interest and answer the primary 

research question. For confirmatory studies, the primary endpoint is also the outcome 

measure that is used to determine the sample size. The experiment will be sufficiently 

powered for the primary endpoint, only, in confirmatory trials. All secondary endpoints 

can be analysed in an exploratory (mainly descriptive) fashion only. Ideally, there is 

only one primary outcome measure. This could also be a combination of different e.g. 

behavioral tests. In this case, the primary outcome could be a specific proportion of 

behavioral tests failed or a certain constellation of test parameters that are considered 

to build the primary outcome of interest as a binary variable (constellation reached 

yes/no). Occasionally, there are two or three primary research questions and thus 

primary endpoints. Then multiple testing needs to be accounted for by adjusting the 

significance level in the sample size calculation. 
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The primary endpoint - as all other endpoints - should be specified precisely and 

objectively with the exact measurement method, the unit of measurement and the 

specific point in time when the measurement for the primary research question is 

taken. The latter is especially important if the study has a longitudinal design and 

measurements/observations are made at several points in time (i.e. measurements 

are not independent). 

3.1 Examples 

Examples for a primary endpoint could be the signal to noise ratio of a fluorescent 

marker in a specific region of interest normalized to a background region (without 

unit), the sensitivity of a certain test, the tumor size in mm³ after 12 weeks of 

treatment, the occurrence of heart failure within 3 months, progression free survival 

in days, or changes in a performance score 8 weeks after after treatment. 

3.1.1 Specific exploratory example 

In our exploratory example the primary endpoint is the bone fraction of the callus 

volume measured by µCT at day 21. It is calculated as the relative proportion of bone 

volume (BV) to total callus volume (TV) in percent over a volume of interest in the 

callus (BV/TV in %). 

3.1.2 Specific confirmatory example 

In our specific confirmatory example the primary endpoint is the left ventricular 

ejection fraction (LVEF) in percent measured 20 days after virus injection via 

echocardiography. 

4 Study design 

The study design comprises an overview of the study concept (including objectives) as 

well as the general workflow. In general, it contains information about the type of 

animal and strain, the number of groups and their constellation (e.g. are male and 

female animals assigned to different treatment groups, are animals/study units 

observed over time, etc.). Further, each measurement and its timing should be 

included and explained, e.g. in a table with explanatory text or a figure. A schematic 

figure of the workflow is very ad- 

visable (see, e.g., www.lucidchart.com, or https://eda.nc3rs.org.uk/). Thus, the study 

design should be a clear and easily understandable description of the study and is 

fundamental for both a well devised proposal and an equitable review. In animal 

testing, most study designs are rather complex and designed with sequential manners 

in the way that the involvement of further animals/units or even further experiments 

http://www.lucidchart.com/
http://www.lucidchart.com/
https://eda.nc3rs.org.uk/
https://eda.nc3rs.org.uk/
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might depend on the outcome of the respective trial. A complete description of the 

study design should involve these information as well as a detailed list of stopping or 

continuing criteria. Two very important design aspect to yield unbiased results (i.e to 

exclude systematic errors, see also https://catalogofbias.org/) and to ensure equality 

of handling and observation are randomisation and blinding. Randomisation is the 

random allocation of animals to their treatment groups. It is advisable to use a 

computer generated randomisation list and to keep the list disclosed until 

randomisation for a specific animal occurs. A dedicated person for handling the 

randomisation list migth be necessary. randomisation in (flexible) blocks is also 

advisable to reduce foreseeability of allocation. Further, the randomisation should be 

stratified by important prognostic factors in order to generate comparable groups 

(with the only difference being the treatment) if possible. Many different software 

packages and online tools for the generation of randomization lists exists (e.g., R-

package randomizeR or https://www.randomizer.at/ or the experimental design assis- 

tant https://www.nc3rs.org.uk/experimental-design-assistant-eda). The treatment 

group of the animals should be blinded to the investigator, if possible, to ensure equal 

observation of all animals. 

4.1 Examples 

4.1.1 Specific exploratory example 

This is a 2x2x3 Design. Two strains of mice in two treatment groups (GX treatment in 

the initial healing phase/ Gx depleted controls) are measured in three subgroups on 

day 3, 14 and 21 after osteotomy, respectively. The effect on the inflammatory 

response is determined by FACS analysis on day 3 and 14, and bone healing in the 

osteotomy gap is analysed on day 21 by µCT. See figure 1 for the design flowchart of 

this setting. 

Blinding: For FACS analyses and evaluation of µCT images the observer will be blinded, 

not knowing the corresponding treatment groups. 

Randomisation: Within each strain, mice are randomized into treatment and control 

as well as ”day 3”, ”day 14” and ”day 21” subgroups using randomisation lists stratified 

for male and female mice prepared with the R-package randomizeR. 

4.1.2 Specific confirmatory example 

The study flow diagram for this study with a 2x3x2 group design is shown in Figure 2. 

Two operation modes (sham/TAC) are measured in three treatments (AAV+gene, AAV 

wo gene, saline) in both sexes (male/female). 

https://catalogofbias.org/
https://catalogofbias.org/
https://catalogofbias.org/
https://www.randomizer.at/
https://www.nc3rs.org.uk/experimental-design-assistant-eda
https://www.nc3rs.org.uk/experimental-design-assistant-eda
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Blinding: The conduct of operation procedures will not be blinded. Nevertheless, the 

assessment of the outcome (echocardiography) will be done blinded. Analysis will be 

conducted according to the analysis plan outlined here. 

Randomisation: We use a stratified randomisation scheme with animal sex and weight 

in 3 classes with an allocation ratio of 2:1 for TAC groups and controls prepared with 

the R-package randomizeR. 

5 Sample size planning 

5.1 Sample size planning for exploratory experiments 

5.1.1 Goal and general principle 

In exploratory research, previous evidence might not exist or if it does it is potentially 

associated with high uncertainty due to low number of experimental units. Sample size 

planning can thus be based on estimating effect sizes with a certain precision (i.e. 95% 
confidence interval). Similar experiments or literature can serve as a proxy for the 

range of values to expect. Effect sizes from previous studies (also own), however, often 

carry the risk of effect size inflation (Colquhoun (2014)), meaning those effects 

published are likely overestimated. In exploratory analyses it is advisable to define a 

minimum effect size of interest that the experiment can detect with a certain power. 

The motivation for this effect size can be based on previously found effect sizes, 

biological relevance, but also on feasibility by stating what effect size can be 

sufficiently detected when only a certain amount of animals is available. Importantly, 

calculations should be done how power changes if the true (not the measured) effect 

size is actually lower than anticipated. Our general recommendation is that a 

successful exploratory experiment should be followed up by a confirmatory study that 

is based on the findings of the initial study considering effect shrinkage (Drude et al. 

(2022)). 

5.1.2 Specific exploratory example 

Since this is the first experiment ever to investigate the role of the growth factor GX 

for fracture healing, no specific assumptions about the effect size can be made, and 

the sample size is justified via the precision of the estimation. We plan to use eight 

animals per subgroup and time point resulting in 8x12=96 animals. This is a pragmatic 

choice based on our experience with similar exploratory experiments. This sample size 

allows for a sufficient precision of the estimation if the variance is not unexpectedly 

high: previously, we have observed standard deviations of about 0.2 to 0.3 in this 

outcome measure. Assuming a common standard deviation of 0.3, a two-sided 95% 

confidence interval for the difference in means will extend by 0.32 from the observed 
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difference in means, which would be sufficient in our opinion to describe fracture 

healing effects of GX for the first time. 

With 8 animals per group, a two-tailed t-test with significance level 0.05 has a power 

of 80% to detect a standardised effect size (Cohen’s d) of 1.56 using the planning 

software G*Power. This corresponds, for example, to an expected difference in means 

of at least 0.5 with an estimated pooled standard deviation (SDpooled) of 0.32 given the 

formula Cohen’s d= (µ1 − µ2)/(SDpooled). For any smaller effect sizes we have less than 

80% power with 8 animals per group. Multiple testing is not adjusted for here and our 

focus lies on estimating effect sizes with 95% confidence intervals (CI). 

Dropouts: In our experience with this mouse and intervention, there is a dropout due to 

inflammatory reaction in about 10% of animals. We thus need ndropout = roundup( − 8) 

= 1 reserve animal per group resulting in a total of 12 additional animals for the entire trial 

and an overall number of 108 animals including reserve animals. 

5.2 Sample size planning for confirmatory experiments 

5.2.1 Goal and general principle 

For confirmatory experiments, the goal of the sample size calculation is to ensure that 

the trial has sufficient power to detect a potentially meaningful effect under a given 

type 1 error rate. The statistical power represents the chances of a ”true positive” 

detection given that an effect actually exists. Statistical power ranges from 0 to 1 (or 

100%) and is typically desired to be at least 0.8 (or 80%). A statistically significant 

finding is given if the p-value calculated from the data is below the predefined 

significance level α. In that case the null hypothesis (”there is no effect”) is rejected in 

favour of the research or alternative hypothesis (”there is an effect”). The higher the 

statistical power, the lower the probability of making a type 2 error β by wrongly failing 

to reject the null hypothesis, or in other words the lower the chances of a ”false 

negative” finding. 

Importantly, only the effect on the primary endpoint is considered for the sample size 

calculation. Secondary endpoints do not play a role in the sample size calculation for a 

confirmatory experiment. Therefore the trial will not necessarily be powered for their 

detection, although methods exist to make additional claims on secondary endpoints. 

Nonetheless, these have to be prespecified. 

The specific calculations that are performed for the sample size calculation depend on 

the corresponding appropriate statistical test, but the general procedure usually 

remains the same. The following items are involved and have to be stated explicitly a 

priori (before data are acquired) after having specified the null and the research 

(alternative) hypothesis: 
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1. Type I error rate, or the ’significance level’: the probability of rejecting the null 

hypothesis although it is actually true. 

2. Power: the probability of rejecting the null hypothesis given the alternative 

hypothesis is true. This is equal to (1- β) with β being the type II error rate. 

3. Effect size: a quantification of the strength of the effect of interest in the primary 

endpoint. A popular effect size to quantify the difference between two means is 

Cohen’s d but many other effect size measures exist for different situations, e.g. 

for binary outcomes, survival and comparisons of more than two groups. 

4. Sample size: required number of animals per group needed to detect the 

specified effect size with the desired power and at the significance level chosen. 

From these four items, the researcher must specify three to be able to calculate the 

fourth. Typically, type I error rate, power and effect size are specified to calculate the 

sample size. In principle, any of these items can be calculated given the other three are 

provided. Thus, with a specific sample size in mind, a prespecified type I error rate and 

the desired power given, one can also calculate for which minimal effect size the trial 

is powered for. 

In practice, type I error rate and power are often set to 5% and 80%, respectively, and 

the only factor in the calculation that requires considerable justification is the effect 

size. How the effect size is specified depends on the statistical test and the software 

that is used. In many cases it is possible to derive the effect size from the assumed data 

for the primary endpoint under the alternative hypothesis, e.g. the expected 

probability of the event to occur, or the expected group means and standard 

deviations for the control and experimental group. It can sometimes be difficult to 

define a realistic assumption about the effect size, particularly if limited knowledge 

about the subject is available. Instead, it may be appropriate to define the effect size 

as the minimal clinically meaningful or clinically relevant effect that one would like to 

be able to detect with the specified statistical power. The basis and calculation of the 

effect size should be given in detail containing relevant references. If it is not even 

possible to specify the effect size based on prior knowledge and publications, it is likely 

that the trial is actually an exploratory study for which the described confirmatory 

approach is not appropriate. 

5.2.2 Specific confirmatory example 

In our initial study, we detected an effect size of d = 1.5. This measure is derived from 

Applicant et al. 2008 Figure 3A: We detected a mean of µ = 5 and a standard deviation 

of sd = 2 in the AAV+gene group and a mean of µ = 3 with an sd = 2 in the AAV wo gene 

group. This yields an effect size of 1.5 (d = q µ
sd

AAV
2 

+−
+
µ

sd
AAV

2 
− ). Due to the 

pilot character of the exploratory study, we 
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 AAV+ AAV− 
2 

assume an effect shrinkage (Drude et al. (2022)) and thus assume an effect size d = 1.0 
for our confirmatory study. We base our power analysis on our main comparison from 

the exploratory study and conduct a t-test for a mean difference between µAAV + and 

µAAV −. From G*Power(3.1) we calculated that we need 46 animals (23 per group) for 

the simple comparison (p-value threshold=.05, elevated power for a confirmatory 

study β = .9). We aim to have equal number of male and females per group and a 

dropout rate of 10% (see below), that is we will need 26 animals per group. We have 

additional controls that are conceptionally very similar. So we will reduce the number 

of animals in these groups as follows: 28 animals will be distributed to the two TAC 

control groups (AAV wo gene group/saline) (14 each to preserve sex balance). 30 

animals for the three sham operation groups with 10 animals in each group. This will 

lead to an unbalanced design, but will be outweighed by the reduction of number of 

animals in the control groups. We expect no differences between sham control groups 

(mean difference < 10%). 

We anticipate a droput rate of 10%. Examples for such a drop out rate can be found in 

the following publication: Applicant et al. 2012 

6 Statistical analysis 

The section ”Statistical analysis” of the biometric sheet should briefly the summarise 

the statistical analysis plan. 

In a confirmatory study, the focus is on the analysis of the primary endpoint in terms 

of sample size calculation, statistical modeling, and inferential methods used for 

analysis. In an exploratory study, a more comprehensive description of the planned 

strategies may be provided, especially if several equally important research questions 

are addressed. The more precisely the analysis plan is outlined, the more reliable and 

credible the results of the experiment will be. In this sense, a statistical analysis plan is 

one of the most effective tools to avoid ”fishing” for satisfactory results. 

Besides choosing the appropriate statistical methods, another aspect of the statistical 

analysis is the interpretation of potential statistical quantities. When analysing 

treatment effects, the ”significance” of test results (i.e. the p-value) should not be the 

sole base for decisions and discussions (Colquhoun (2014)). Clinical relevance and 

precision of estimates (i.e. confidence intervals) also play an important role. A non-

significant treatment effect may still be worth further investigation if it is clinically 

relevant. On the contrary, if an effect is highly significant but not clinically relevant, a 

further investigation is at least questionable. 
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In the following, some common aspects of the statistical analysis are outlined. It 

depends on the specific experiment, which of these are relevant and whether the list 

is exhaustive. 

• Descriptive statistics. Usually an important part of the statistical analysis are the 

descriptive, summary measures. Here, the specification of absolute and relative 

frequencies for categorical data, mean with standard deviation for sufficiently 

normally distributed metric data or median with limits of the interquartile range 

[25th and 75th percentile] for quantitatively skewed data are common 

standards. In addition, the number of missing values and, if applicable, number 

of and reasons for drop-outs should be explicitly stated. 

• Primary analysis method. Deviations from the statistical test used in the sample 

size calculation should be avoided or must be explained. Possible situations may 

be a lack of information: For example, a sample size may be calculated using an 

unpaired t-test and the analysis is planned using an ANCOVA model including 

treatment group (which would be the primary treatment effect) and baseline 

measurements (of the continuous outcome variable). The baseline adjusted 

effect of the treatment might be unknown in the planning phase, so using the t-

test is a conservative approach for sample size calculation in such a situation. 

Further, including the baseline measurement in the actual analysis later might 

increase the power due to less residual variation. 

• Multiple testing. If more than one primary endpoint is tested or if claims for 

secondary endpoints are also important, the type I error (i.e. the probability of 

finding a false positive result) increases if no proper adjustments are 

undertaken. Therefore, the planned analysis should account for the type-1 error 

rate inflation. For this multiple testing problem many solutions exist (e.g. control 

of family wise error rate, or false discovery rate, hierarchical testing) and the 

choice of an appropriate approach might dependent on the research question 

and aim of the trial. The problem of multiple testing is less pronounced in 

exploratory trials than in confirmatory trials, since in exploratory trials usually 

the aim is to identify all possibly relevant signals and false positive findings are 

less severe. Nevertheless, excessive testing in exploratory trials should be 

avoided and the focus should also be on clinical relevance and precision of 

estimates For situations with high dimensional data, where there are much more 

dependent variables than independent observations to be analyzed, multiple 

testing needs to be accounted for also in exploratory trials. 

• Alternative testing. It is also possible (and advisable) to include alternative tests 

if certain prerequisites for tests are not fulfilled (e.g. if the data do not follow a 

normal distribution). This will increase the transparency and reliability of the 

analysis further. 

• Repeated measures. It is often the case that measurements are not 

independent from each other, e.g. because the same individuals are measured 
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multiple times or because animals that were kept in the same cage are more 

similar to each other than to animals from another cage. If possible, these cluster 

effects (observation clustered in a single animal and animals clustered in a cage) 

should be accounted for in the analysis. If not accounted for, this might lead to 

severe bias (Aarts et al. (2014)). 

• Handling missing values. If information on important measurements is missing, 

this can negatively affect the statistical power and introduce bias. Depending on 

the mechanism and amount of missing values, a simple complete case analysis 

might be sufficient, e.g. if information is missing completely at random in only 

few occasions. In more complex cases, more sophisticated statistical approaches 

might be needed (e.g. multiple imputation). 

• Adjustment for confounders. Relevant confounders should be accounted for in 

the analysis. Since this additionally accounts for variance in the outcome, it 

usually increases power of the statistical analysis. Such confounders can be any 

parameters that differ between the groups being compared, such as age and sex 

in some experiments. 

• Secondaryanalyses. While the sample size planning is usually conducted for a 

single primary analysis, there may be multiple secondary goals of the 

experiments. Per definition, the sample size is not sufficiently powered for the 

secondary analyses, and thus these are exploratory with a hypothesis generating 

character or purely supportive for the findings of the primary analysis. The 

description of the secondary analyses should at least state the endpoints and 

the planned statistical methods. 

6.1 Examples 

6.1.1 Specific exploratory example 

Data analysis will be exploratory and mainly descriptive with the report of mean and 

standard deviation or median and limits of the interquartile range [25th and 75th 

percentile] for continuous data and absolute and relative frequencies for ordinal and 

nominal variables. In addition, the number of missing values and deceased animals is 

explicitly stated. Differences between experimental groups are reported with 95% 

confidence intervals. All p-values are exploratory only and do not allow for 

confirmatory generalisation. Adjustment for multiple testing is deliberately omitted. 

The focus of the evaluation is on estimating effect sizes with 95% confidence intervals. 

Exploratory analyses will be marked as such in the publication. 

6.1.2 Specific confirmatory example 

Descriptive statistics are given as mean and standard deviation or median and limits of 

the interquartile range [25th and 75th percentile] for continuous data and absolute 
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and relative frequencies for nominal variables. In addition, the number of missing 

values and deceased animals is explicitly stated. Differences between experimental 

groups are reported with 95% confidence intervals. 

We first calculate a linear model with LVEF as dependent variable and our treatment 

and sex as independent variables. Although sample size was calculated using the 

simple t-test, a linear regression will be used for analysis to account for sex as 

additional co-variate. In this linear model, our main contrast of interest is the post hoc 

comparison of TAC AAV+ mice vs. TAC AAV- mice. In a follow-up analysis, we will 

increase the number of factors in the treatment variable to account for the different 

controls (i.e. instead of treatment and two controls, we will have six factor levels). The 

experiment is not powered for interactions between independent variables, but we 

will conduct an exploratory analysis into the interaction between treatment and sex. 

This will be used for deciding for future experiments and whether this needs to be 

explored further. All exploratory analyses will be marked as such in the publication. 

7 Prerequisites and consequences for subsequent (sub-

)experiment(s) 

Often animal studies are planned with a distinct order of single experiments. Results 

of one experiment can have an impact on subsequent experiments, e.g. on the dosage 

applied, the operational setting used, the number of subgroups investigated, or the 

time point of investigation. If such a sequential order of the experiments is planned, it 

should be stated explicitly which conditions from previous (sub-)experiments have to 

be fulfilled in order to start with the present (sub-)experiment. Moreover, any 

conditions that lead to a go/no-go decision must be stated clearly, as well as their 

impact on further experiments and analyses. Such conditions can, but do not have to 

be of statistical nature. In some cases, a strict biological/medical justification may be 

sufficient. For example, stopping an experiment can be based on exceeding pre-

specified thresholds on established scores, or if in other ways a treatment turns out to 

be not tolerable or not effective. Further, there might be arguments from a design 

perspective to not perform an experiment: if the experiment is clearly a follow-up on 

a subsequent experiment, it might make no sense to perform the second experiment 

if the result of the first was negative. 

It must be noted that experiments which are stopped before the planned sample size 

was reached yield biased data. Therefore it is bad research practice to terminate an 

experiment early once a significant p-value was found (or the data look bad so that a 

significant p-value appears unlikely), even when the motivation is to save animals. 

Unplanned changes in the experimental plan must always be described in publications, 

so that the magnitude of bias can be judged. Although not commonly performed in 

preclinical research, it is possible to plan an experiment with group sequential testing 

in the strict statistical sense (Neumann et al. (2017)). Such a planning allows for early 

stopping based on statistical parameters, e.g. the p-value, under control of type I error 
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and power. In this case, a clear reporting of time points and nature of the interim 

analyses is required, i.e. under which conditions the experiment will be terminated and 

how results of this experiment affect the rest of the trial. 

7.1 Examples 

7.1.1 Specific exploratory example 

Subgroups of animals in strain A and B will be subsequently examined on day 3 and 21 

irrespective of results in the other strain. No specific prerequisites have to be fulfilled 

and no go/no-go scenarios are intended as long as the stress on the animals is 

acceptable (stress score below xxx). The experimental groups with the endpoint FACS 

analyses on day 14 are only performed if either on day 3 or on day 21 a signal was 

observed. Otherwise, a relevant signal seems unlikely and these experimental groups 

are discarded. There is no formal statistical definition of ”a relevant signal” but a brief 

interim report will be provided to the regulatory authority to justify 

continuation/stopping of the experiment. 

7.1.2 Specific confirmatory example 

No sequential approach is planned. Based on the preceding studies, no severe safety 

issues are expected. In case of unforeseen problems that make it necessary to 

terminate some parts or the whole experiment early, the regulatory authorities will be 

notified and the circumstances will be described in the corresponding publication(s). 

8 Summary table for the 2 examples 

For a detailed overview of the final design, the calculated sample size (including 

possible dropouts) for each group, assumed effect sizes and/or effects to be estimated 

as well as the overall (total) number of animals planned are summarized in a table. 

Examples are provided in Table 2 and 3. 

Table 2: Summary table for the exploratory example. 

Group 
Primary 

Endpoint 
Expected 

Effect 
Reference for 

expected effect 
Effect Size 

Drop-Out 

Rate 

Sample 
Size 

(including 

Dropouts) 
Strain A: 

Treatment (GX) 
day 3 
day 14 day 

21 

BV/TV in % 
mean21d= 80% 

(SD: 33%) 
Name et al. 

(2020) 
Cohen’s 

d=1.506 
10% 

8/0.9≈9 
per subgroup 

day 3,14 and 21 
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Strain A: 
Control day 

3 
day 14 day 

21 

BV/TV in % 
mean21d= 30% 

(SD: 33%) 

  

10% 
8/0.9≈9 

per subgroup 

day 3,14 and 21 

Strain B: 
Treatment (GX) 

day 3 
day 14 day 

21 

BV/TV in % 
mean21d= 80% 

(SD: 33%) 
Name et al. 

(2020) 
Cohen’s 

d=1.506 
10% 

8/0.9≈9 
per subgroup 

day 3,14 and 21 

Strain B: Control 
day 3 
day 14 day 

21 

BV/TV in % 
mean21d= 30% 

(SD: 33%) 

  

10% 
8/0.9≈9 

per subgroup 

day 3,14 and 21 

     Total: 9 x 12 = 108 

Table 3: Summary table for the confirmatory example 

Numbers have been adjusted for group sizes to be approximately equal 
between treatment (AAV+/TAC)and the two control conditions (TAC control 
has 2 subgroups; the sham operated group has three sub control groups). 

9 Appendix: Glossary 

9.1 Glossary 

Bias 

The term bias describes systematic deviations or differences between results of the 

study and the true population value. An example could be that estimations for a 

Group 
Primary 

Endpoint 
Expected Effect Reference for 

expected effect 
Effect 

Size 
Drop-Out 

Rate 
Sample Size 

(including 

Dropouts) 
AAV+ TAC 

Operation 
LVEF in % meanLVEF= 50% (SD: 

22%) 
Name et al. 

(2020) 
Cohen’s 

≈0.9 
< 10% 28/0.9≈32 

AAV-/Vehicle TAC 

Operation LVEF in % 
meanLVEF= 30% (SD: 

22%) 

  
< 10% 

28/0.9≈32 
per subgroup 

+ drop out 
AAV+/AAV-/Vehicle 

Sham Operation LVEF in % 
meanLVEF= 70% (SD: 

22%) 

  
< 10% 

30/0.9≈33 
per subgroup 

+ drop out 

     Total: 32+32+33=97 
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( n 1 − 1) · s 2 1 +( n 2 − 1) · 

population will potentially be biased if only male mice are analyzed instead of male 

and female mice. There are many sources of bias, like allocation bias, observer bias, 

attrition bias or confounding (https:// catalogofbias.org/biases). 

Biological replicate 

A biological replicate is a measurement on the level of the biological unit. The biological 

unit (BU) is the entity about which inferences are made. If you test only one cell line in 

an experiment, inferences can be made only about this cell line as biological unit. It is 

still unclear in how far this extrapolates to other cell lines or humans in general. 

Blinding 

Blinding describes whether certain people involved in the study have knowledge about 

allocation of groups. Single-blind refers to the study subjects not knowing whether 

they are in the treatment or control group, double-blind applies when neither the 

study subjects nor the treating and outcome assessing researcher do have this 

information. Triple blinding implies that also the analysing researchers do not have any 

knowledge about group allocation. Blinding is meant to reduce bias, specifically 

observer bias. Sometimes, blinding may not be possible by design. 

Clinical relevance 

An effect (e.g. a difference) is clinically relevant if it is significant from a medical point 

of view. The assessment is therefore not at the discretion of statistics, but must be 

evaluated or assessed or determined by medical professionals. 

Cohen’s d 

Cohen’s d is a common effect size measure when the difference of two group means is of 

interest. It is defined as the difference of means divided by the pooled standard deviation 

of the two groups, i.e. X 1 , where s2 = n1+n2−2 
s22. There, the groupwise variance is defined 

as s  ni
1

−1 
Pn

j=1i (Xi,j −Xi)2. For onesample problems this effect size reduces to d , where 

µ is the assumed true population mean and s2 the empirical variance of the data. 

Confidence interval 

The confidence interval is an interval of (un-)certainty. It covers the true population 

value with probability of 1−α (see Significance Level). Contrary to the p-value, the 

confidence interval reflects the variation of the data and is directly interpretable with 

respect to the effect. Furthermore, increasing sample size leads to narrower 

confidence intervals and therefore increasing the precision of the estimate. 

− X 2 √ 
s 2 

https://catalogofbias.org/biases
https://catalogofbias.org/biases
https://catalogofbias.org/biases
https://catalogofbias.org/biases
https://catalogofbias.org/biases
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Confirmatory study 

A study aimed at corroborating empirically specific relationships between defined 

factors, based on previous (exploratory) observations. Results from confirmatory 

studies may verify a hypothesis and require adequate sample size planning a priori. 

Confounder 

A distortion that modifies an association between an exposure and an outcome 

because a factor is independently associated with the exposure and the 

outcome (https://catalogofbias.org/biases/confounding/). Importantly, a confounder 

variable is not a consequence of the experimental intervention. In experiments with 

small sample sizes confounding can be substantial despite randomization and 

constitutes a source of random error and bias. 

Effect 

A (statistical) effect is a statistical parameter that is used to quantify and summarize 

the endpoint of a trial. For example, an effect could be the group mean at a specific 

point in time, a difference of means, a correlation, an odds ratio or a risk ratio. 

Effect shrinkage 

Estimated effects from exploratory trials are often overestimated due to small number 

of subjects, missing prior information about potential effect sizes and publication bias 

(Colquhoun (2014)). Thus, for planning a confirmatory trial one would assume a 

smaller (”shrunk”) effect than was observed in the prior exploratory trials (Drude et al. 

(2022)). A rule of thumb for shrinkage is to use approximately 2/3 of an exploratorly 

oberved effect size. 

Effect size 

The terms effect, strength of the effect, effect size are used synonymously. It should 

be used to illustrate and describe the practical relevance of statistically significant 

results instead of the p-value. Different effect measures exist to calculate the effect 

size depending on the variable’s scale. An effect size should be derived considering not 

only a relevant size of an effect but also a variation when observing this effect i.e., the 

relevant effect in units of the standard deviation. This effect size refers to a statistic 

which estimates the magnitude of an effect. 

https://catalogofbias.org/biases/confounding/
https://catalogofbias.org/biases/confounding/
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Endpoint 

Endpoint is synonymous to outcome or measurement of interest (e.g. systolic blood 

pressure). It describes a variable of interest that the trial wants to investigate. There 

should be only one primary endpoint and possibly one or more secondary endpoints. 

Estimate 

An estimate is a value that summarizes an observed sample and is used to approximate 

the true population value. For example, if a sample mean is equal to 3.14, this specific 

value is one estimate for the population mean, based on the respective sample used. 

Experimental unit 

The experimental unit (EU) is the entity that is randomly and independently assigned 

to experimental conditions, e.g. the cage or each single animal. The EU makes up the 

sample size (N). The observational unit (OU), on the contrary, is the entity on which 

observations (or measurements) are made, e.g. several mice in one cage or several 

organs in one mouse. If observational units are not the experimental unit and thus 

mistaken as sample size (N), pseudoreplication is introduced and studies are likely 

underpowered. 

Exploratory study 

A study aimed at investigating possible relationships between different factors without 

having strong previous assumptions or statistical hypotheses. An exploratory study 

may be used to identify confounders (e.g., physiological parameters relevant to the 

research question). The result of an exploratory study may allow for generation of a 

statistical hypothesis that can later be tested in a confirmatory study. 

Familywise error rate (FWER) 

The FWER is the probability of having at least one false significant result from multiple 

hypotheses. This is relevant in multiple testing. Intuitively, this can be thought of as 

the type 1 error of the collection of hypothesis, or stated colloquially ”probability of 

having some false significant result“. 

Fishing for significance 

Also known as p-hacking, fishing for significance describes that only significant results 

are reported after multiple testing and analyses have been performed without 

respective adjustments. 
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G*Power 

G*Power is free software that can be used to perform sample size calculations on your 

computer (https://www.psychologie.hhu.de/arbeitsgruppen/ allgemeine-

psychologie-und-arbeitspsychologie/gpower). 

Hypothesis test 

The hypothesis test provides a decision on the basis of a predetermined criterion (e.g. 

the significance level) whether the null hypothesis can be rejected on the basis of the 

data and thus the research (or alternative) hypothesis can be accepted or whether the 

null hypothesis cannot be rejected on the basis of the data. 

Independence 

(Stochastical) Independence is given if two or more events/outcomes/random 

variables do not affect or imply each other. For example, two different people flipping 

a coin each are independent because the toss of one does not affect the toss of the 

other one. On the other hand, measuring a clinical parameter in one subject at two 

different points in time is most likely dependent (e.g. high baseline measurements 

could lead to high follow up measurements). 

Internal validity 

Internal validity refers to how far measurements in an experiment reflect causal 

conclusions or mechanisms. That is, do we really measure what we want to measure? 

A proper experimental design will aim for high internal validity reducing potential risks 

of bias by introducing for example randomisation and blinding. 

Multiple testing 

Multiple testing describes the situation where several hypotheses of interest are 

tested. Without proper adjustment it leads to type 1 error inflation. For example, this 

occurs when multiple groups are included in the trial and several pairwise comparisons 

are conducted. Or when several primary endpoints are compared between groups. 

Null hypothesis 

In statistics, the null hypothesis (also H0) is an assumption that may be rejected using 

an hypothesis test. For superiority studies, the null hypothesis usually states that on 

average there is no effect, no difference or connection between the groups to be 

compared. Its counterpart is the alternative or research hypothesis. See also statistical 

hypothesis. 

https://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-und-arbeitspsychologie/gpower
https://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-und-arbeitspsychologie/gpower
https://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-und-arbeitspsychologie/gpower
https://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-und-arbeitspsychologie/gpower
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Objectives 

The objectives are related to the hypotheses and therefore to the primary and 

secondary endpoints. The primary objective is the same as the primary research 

question and describes what the study is planning to answer. 

Power 

The probability of rejecting the null hypothesis given the alternative hypothesis is true. 

This is equal to (1- β) with β being the type 2 error rate. 

Precision 

Precision refers to the precision of an estimator or an estimate. Thus, it describes how 

confident we can be about a certain finding, typically given by a confidence interval 

(where the precision can be measured by the width of the respective interval), the 

standard deviation or standard error of the estimate. 

Preclinical research trajectory 

A preclinical research trajectory comprises a cumulative series of experiments 

(including exploratory and confirmatory) that generate evidence to enable a decision 

to carry a newly developed intervention forward to clinical testing. 

P-value 

The p-value is the conditional probability to observe the observed or more extreme 

(i.e. for example even larger) differences if the null hypothesis (there are no 

differences between the groups) would apply. The condition that the null hypothesis 

is valid must be given in order to interpret the p-value as the named probability 

(therefore ”conditional” probability). It can be interpreted as the probability of 

obtaining the observed data if the null hypothesis holds, which means that small p-

values are indicative of the alternative hypothesis. 

Randomization 

A procedure in which subjects (for example, participating patients) are randomly 

assigned to different treatment groups using a randomization mechanism. This is 

intended to distribute known and unknown person-related confounders equally 

between e.g. therapy and control groups. 

Reliability 

Reliability refers to the consistency in a measurement. In a broader scientific context, 

this means that a result is reliable if it is consistently replicated. A reliable 
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measurement is not necessarily valid; for example, if results are reproducible, but do 

not reflect the studied disease pathology. The sample size directly influences the 

reliability of a result as uncertainty about the measured effect is (in most cases) 

decreased with increased sample size. 

Replicability 

Replicability is the ability to obtain similar results throughout a scientific experiment 

by maintaining the exact same conditions, experimental design, etc. 

Replication 

The process of confirming previous empirical evidence by means of e.g., using either 

the same or closely resembling methods, including additional controls and/or 

conditions, performing previous experiments in different labs or analysing a larger 

number of samples or animals than in the original study, with the aim of increasing the 

reliability and reaffirming the reliability of previously observed results. In the 

framework of preclinical research trajectories, replications are considered part of a 

confirmation process. Given that a series of experiments is needed to confirm a 

hypothesis about a directional relationship, replications incrementally solidify 

evidence supporting (or refuting) an initial claim. 

Reproducibility 

Reproducibility refers to the understanding of experimental procedures and analyses 

in such detail that researchers can engage in a replication. Through this researchers 

can distinguish between variability in results that arise from methodological 

differences and variability due to sampling variability. 

Research hypothesis 

The research hypothesis (also called alternative hypothesis, H1) is the counterpart of 

the null hypothesis and claims in superiority studies that there is an effect, a difference 

or a connection between the groups being compared. 

Sample size or number of cases 

The number of cases (n) or the sample size is the number of independent experimental 

units from a population in a study. In order to estimate statistical parameters with a 

given accuracy from a sample, sample size calculation/planning is required. 
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Sensitivity 

This term is typically related to diagnostic and prognostic models and describes the 

proportion of true positives, i.e. the rate of positive diagnoses/predictions, given that 

the true value is positive as well. 

Significance level 

The decision limit (α) when a statistical test result is considered significant (when p-

value ≤ α). The significance level is also called the probability of error (α error or type 

1 error) of a statistical hypothesis test. It is the maximum tolerated error probability 

with which the test may erroneously decide in favour of the alternative hypothesis if 

the null hypothesis was true in the population. 

Usually a significance level α = 0.05 is defined, i.e. a maximum of 5 false positive 

statistically significant test results out of 100 tests on different samples from the 

population is tolerated. 

If the null hypothesis is rejected with a significance level of 5%, there is a 5% probability 

of error, i.e. 5% of type 1 errors are made. 

Smallest effect size of interest (SESOI) 

The SESOI is the smallest effect size that is considered theoretically and/or practically 

interesting and can be taken to justify the sample size for a given experiment. To 

determine the SESOI, previous evidence as well as practical aspects (e.g., feasibility) 

may be considered. 

Specificity 

This term is typically related to diagnostic and prognostic models and describes the 

proportion of true negatives, i.e. the rate of negative diagnoses/predictions, given that 

the true value is negative as well. 

Statistical hypothesis 

The statistical hypothesis is a reformulation of the research question to connect it to a 

statistical hypothesis test. A statistical hypothesis must satisfy at least two conditions: 

(i) There has to be a statistical parameter contained (e.g. the mean, proportion, odds 

ratio, regression coefficient, event rate...) and (ii) together with its counterpart 

hypothesis it must exhaust the whole possible parameter space. The latter can be 

confirmed if either the null or the alternative hypothesis must be true with no third 

option available (e.g. µ ≤ 3 vs. 

µ > 3). 
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Statistical inference 

Statistical inference describes the process of inferring information from a sample to a 

population via statistical tools. A non-significant treatment effect may still be worth 

further investigation if it is clinically relevant. On the contrary, if an effect is statistically 

significant but not clinically relevant, a further investigation is at least questionable. 

Statistical significance 

The result of a statistical test is called statistically significant if the calculated p-value is 

less than the pre-defined significance level α. In this case, the sample data are less 

likely given the null hypothesis was true than the previously defined probability of 

error for a false positive result (usually 5%), such that the null hypothesis is rejected 

and the alternative hypothesis is accepted to be true. A confirmatory generalization of 

a statistically significant test result (meaning that the alternative hypothesis is valid in 

the entire population) is only meaningful in confirmatory experiments. Exploratory 

experiments do not allow confirmatory generalization of results. A non-significant 

treatment effect may still be worth further investigation if it is clinically relevant. On 

the contrary, if an effect is statistically significant but not clinically relevant, a further 

investigation is at least questionable. 

Technical replicate 

Technical replicates are replicates regarding one biological unit and can form several 

levels across a hierarchy (dependent experiments on the same day, or independent 

experiments on different days, but with the same cell line, for example). Important 

hierarchy levels are the experimental unit and the observational unit. As this term can 

be ambiguous as to the level addressed the exact level should be stated when 

introducing technical replicates. 

Type 1 error 

In hypothesis testing, a type 1 error occurs when the null hypothesis (drugs act in the 

same way) is wrongly rejected and the alternative hypothesis (drugs act differently) is 

accepted, although in reality the null hypothesis is true (corresponds to a false positive 

result). The maximum error probability for type 1 error is determined with the 

significance level α (usually 0.05 or synonym 5%) under the assumption that the null 

hypothesis applies. 

Type 1 error inflation 

This error inflation occurs in multiple testing situations. If no adjustments are made 

the familywise error rate increases with an increasing number of hypothesis tests 

performed. As a result, the probability of obtaining falsepositive results increases. 
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Type 2 error and power 

Whereas the type 1 error rate describes the rate of falsely rejecting the null hypothesis, 

the type 2 error describes the rate of not rejecting the null hypothesis which is actually 

false. This might be, for example, if a statistical test does not detect an actual effect. 

Complementary, the power of a statistical test describes its ability to detect effects, 

i.e. proportion of correct rejections of the null hypothesis. Thus, if the type 2 error is 

β, the power is 1−β, typically required to be 80%. 
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