KONZEPT UMGANG MIT NIEDERSCHLAGSWASSERN

Bauvorhaben: Wohnbebauung und Modulare Flüchtlingsunterkünfte Rudower Strasse 184 B,C,D

Berlin-Neukölln

Bauherr: degewo AG

Potsdamer Straße 60

10785 Berlin

1. Versickerungsbedingungen

Um Kenntnisse zur Versickerungsfähigkeit des Bodens zu erlangen, wurde die ARGE Ingenieurbüro UCM GbR - Umweltconsulting & Management und Büro für Abfall- und Umweltmanagement von der degewo AG beauftragt, eine Baugrund- und Umweltuntersuchung auf dem Gelände der Rudower Str. 184 in 12351 Berlin durchzuführen.

Das Gutachten, Stand Juni 2020, erachtet den anstehenden Untergrund anhand der anstehenden Geschiebesedimente für eine Versickerung als erschwert, da oberhalb und innerhalb der bindigen Schichten lokal aufstauendes Schichtenwasser festgestellt wurde. Gut wasserdurchlässige Schichten stehen meist ab 35,5 m ü. NH an (ca. 5 m unter GOK). Die Durchlässigkeitsbeiwerte schwanken zwischen $k_f = 10^{-4}$ m/s und $k_f = 10^{-7}$ m/s.

Der für den Bau von Versickerungsanlagen relevante zu erwartende Mittlere Höchste Grundwasserstand (zeMHGW) wird in dem Baugrundgutachten mit 34,5 m ü. NHN angegeben. Bei einer Geländehöhe von ca. 40,5 m ü. NHN beträgt der Flurabstand ca. 6 m.

2. Konzept

Aufgrund der zuvor beschriebenen erschwerten Versickerungsbedingungen wird die Möglichkeit der Einleitung des gesammelten Regenwassers in den anliegenden Regenwasserkanal in der Rudower Straße genutzt. Gemäß dem Hinweisblatt Begrenzung von Regenwassereinleitungen bei Bauvorhaben in Berlin (BreWa-Be) vom Juli 2021 dürfen auf dem ca. 12.622 m2 großen Grundstück (MUF + Haus 1+Haus 2) auf Basis der geltenden spezifischen Abflussspende von 10 l/(s* haAE,k) max. 13 l/s in den Regenwasserkanal in der Rudower Straße eingeleitet werden. Dieser Wert wurde nochmals schriftlich von den Berliner Wasserbetrieben am 28.10.22 bestätigt. Die Dachflächen aller Gebäude werden extensiv begrünt. Dadurch wird die Menge des einzuleitenden Niederschlags reduziert, da ein Teil des Niederschlags durch das Substrat zurückgehalten wird und lokal verdunsten kann.

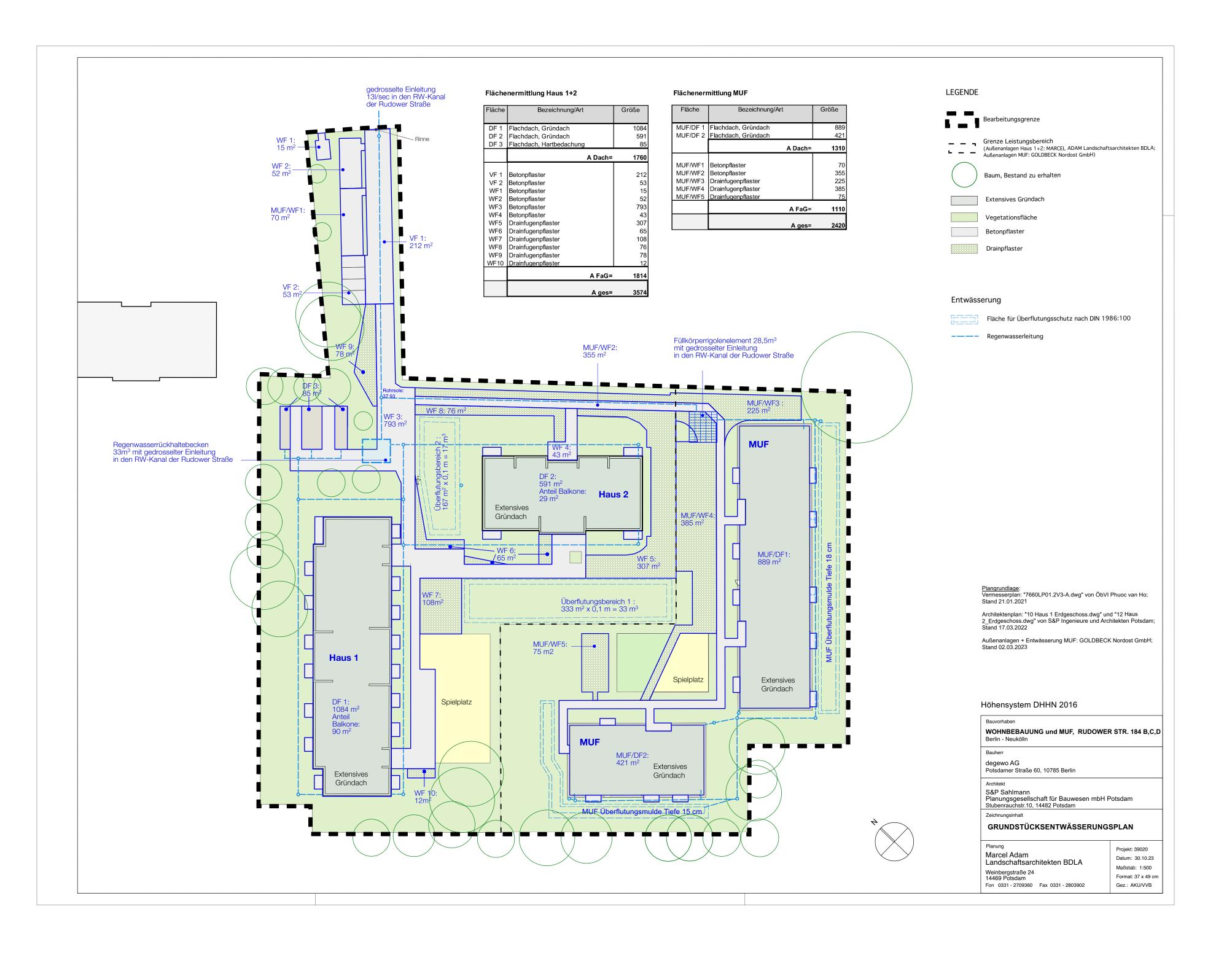
Das zu betrachtende Grundstück wird in zwei Bauabschnitten (BA) realisiert.

Den 1. Bauabschnitt plante das Büro Goldbeck Nordost GmbH. Das seit 13.07.2020 genehmigte Bauvorhaben der Modularen Unterkünfte für Flüchtlinge (MUF) sieht folgende Grundstücksentwässerung vor: Der Niederschlag der beiden extensiv begrünten Dachflächen soll in dem Füllkörperrigolenelement

zurückgehalten und gedrosselt auf 5,7 l/s in den RW-Kanal der Rudower Straße abgeleitet werden. Die befestigten Flächen in den Außenanlagen werden in Betonpflaster und Drainfugenpflaster hergestellt und sind damit wasser- und luftdurchlässig. Bei stärkeren Niederschlägen kann jedoch nicht der gesamte Niederschlag direkt innerhalb dieser Flächen versickern. Überschüssiger Niederschlag soll dann über die angrenzenden Grünflächen versickern.

Im Januar 2023 erfolgte der Baubeginn der Flüchtlingsunterkünfte. Da der Regenwasserkanal der Rudower Straße mittelbar in den Teltowkanal einleitet, musste für die Einleitung des Regenwassers eine wasserrechtliche Genehmigung beantragt werden. Diese wurde am 13.02.23 erteilt. Gemäß Auflage der wasserrechtlichen Genehmigung wird das Füllkörperrigolenelement mit vollständig verschweißten Dichtungsbahnen eingebaut.

Im zweiten Bauabschnitt ist der Neubau von zwei Mehrfamilienhäusern und dessen Außenanlagen geplant.


Das anfallende Dachflächenwasser (DF1, DF2 und DF3) sowie das Oberflächenwasser der Verkehrsfläche (VF1) wird in einem Regenrückhaltebecken gesammelt und gedrosselt (7,3 l/s) in den Regenwasserkanal der Rudower Straße eingeleitet. Die Dachflächen DF1, DF2 und DF3 entwässern über Rohrleitungen in ein Regenrückhaltebecken, dem ein Filter-/Kontrollschacht vorgeschaltet ist. Das Niederschlagswasser der Zufahrt entwässert in eine geschlossene Entwässerungsrinne. Diese leitet das Regenwasser ebenfalls über einen Filter-/Kontrollschacht in das Rückhaltebecken.

Im beigefügtem Grundstücksentwässerungsplan sind Lage und Größe der zu entwässernden Flächen, das geplante Regenrückhaltebecken (Wohnbebauung), das abgedichtete Füllkörperrigolenelement (MUF), Regenwasserleitungen sowie die Einleitstelle in den RW-Kanal dargestellt.

Überflutungsnachweis

Gemäß DIN 1986-100 ist für Grundstücke mit einer versiegelten Fläche > 800 m² ein Nachweis der Überflutungssicherheit zu führen. Diesbezüglich ist das 30-jährige Regenereignis mit 5- bis 15-minütiger Dauer in Abhängigkeit von Geländeneigung und Versiegelungsgrad gemäß DWA A 118 Tab. 4 heranzuziehen. Im vorliegenden Fall gilt der 15-minütige Bemessungsregen. Die Bemessungsregenmengen auf der Grundstücksfläche sind gemäß KOSTRA DWD zu ermitteln. In der Anlage befinden sich jeweils für die beiden Bauabschnitte Berechnungen zum erforderlichen Rückhaltevolumen sowie zum Volumen der Überflutungsflächen. Die Überflutungsflächen sind in die Grünflächen der Freianlagen als Rasenmulden integriert. Sämtliche sonstige versiegelte Flächen sind nicht zusammenhängend angeordnet und entwässern flächig in angrenzende Grünflächen. Somit ist eine Gefährdung nicht gegeben.

Potsdam, Oktober 2023

Teilbereich: Dachflächen

Bemessung notw. Rückhalteräume für Dachflächen gem. DWA A 117 - einfaches Verfahren

Eingabedaten : $V_{S,U} = (r_{D(n)}-q_{dr}) * D * f_Z * f_A * 0,06 mit q_{dr} = (Q_{dr,RRB} + q_{dr}) * Q_{dr} * Q_{dr}$	+ Q _{dr,RÜB} - Q	_{t24}) / A _u	
Einzugsgebietsfläche	$egin{aligned} A_{E} \ \Psi_{M} \ A_{U} \ Q_{dr} \ q_{dr} \end{aligned}$	m²	1.311
Abflussbeiwert gem. Tabelle 2 (DWA-A 138)		-	1,00
Undurchlässige Fläche		m²	1.311
Drosselabfluss / Einleitmenge		I/s	5,7
Drosselabflussspende bezogen auf A _U		I/(s*ha)	43,2
Gewählte Regenhäufigkeit Zuschlagsfaktor Fließzeit zur Berechnung des Abminderungsfaktors Abminderungsfaktor	n	Jahr	5
	f _Z	-	1,2
	t _f	min	1,2
	f _A	-	1,0
Notwendiges Speichervolumen			
Maßgebende Dauer des Bemessungsregens	$\begin{matrix} D \\ r_{D,n} \\ V_{erf,s,u} \\ V_{erf} \end{matrix}$	min	30,0
Maßgebende Regenspende		l/(s*ha)	135,0
Erfordl. Spezifisches Speichervolumen		m³/ha	198,3
Erforderliches Speichervolumen		m³	26,0

Geschaffenes Speichervolumen durch	Speicherrigole	
Länge der Rigole	m	6,00
Länge der Rigole	m	6,60
Höhe der Rigole	m	0,80
Speicherkoeffizient	[-]	0,90

Bauvorhaben: DEGEWO, Rudower Straße Berlin Datum: 20.07.2022
Projekt Nr.: BG0108 Bearbeiter: I.Wiesner

Teilbereich: Dachflächen

Flächenzusammenstellung

Bezeichnung	Fläche [m²]	Abfluss- beiwert C	Abflusswirk- same Fläche [m²]	Regen- spende	Abfluss Q [l/s]	Bemerkungen
Dachfläche	421,3	1	421,3	r (5,2)	10,67	Geb. Nord
Dachfläche	889,4	1	889,4	r (5,2)	22,53	Geb. Süd

Summe der Flächen	1310,7	=	0,131 ha
Mittelwert Abflussbeiwert	1		
Summe der abflusswirksamen Flächen	1310,7	=	0,131 ha
Gesamtabfluss Q	33,20 l/s		

Abflussbeiwerte C - gem. DIN EN 1986 - 100

Dachfläche	1,0
Betonfläche / Rampe	1,0
Asphalt	0,9
Pflaster mit Fugenverguss / Flächen mit Fugendichtung	0,8
Kiesdächer	0,8
Begrünte Dachfläche -> Extensiv ab 10 cm Aufbaudicke	0,2
Begrünte Dachfläche -> Extensiv bis 10 cm Aufbaudicke	0,3
Pflaster / Platten in Sand	0,7
Pflasterflächen mit Fugen > 15% (ab 10 cm x 10 cm und kleiner)	0,6
wassergebundene Flächen	0,7
Kinderspielplätze mit Teilbefestigung	0,2
Kunststoffrasen	0,5
Rasenflächen	0,1
Wasserdurchlässige Flächen	0,1
Schotterfläche	0,5

Bauvorhaben: DEGEWO, Rudower Straße Berlin Datum: 20.07.2022
Projekt Nr.: BG0108 Bearbeiter: I.Wiesner

Teilbereich : Dachflächen

Berechungsregenspenden für Dachflächen und Grundstücksflächen nach DIN 1986-100 : 2016-12

Niederschlagshöhen und -spenden für Zeitspanne : Januar - Dezember Rasterfeld Spalte: 63, Zeile: 36

Berechnungsregenspenden für Dachflächen

maßgebende Regendauer	Bemessung r _(5,5) :	343,3 l/(s*h)
5 Minuten	Notentässerung r _(5,100) :	626,7 l/(s*h)

Berechnungsregenspenden für Grundstücksflächen

maßgebende Regendauer	Bemessung r _(5,2) :	253,3 l/(s*h)
5 Minuten	Notentässerung r _(5,30) :	513,3 l/(s*h)
maßgebende Regendauer	Bemessung r _(10,2) :	193,3 l/(s*h)
10 Minuten	Notentässerung r _(10,30) :	365 l/(s*h)
maßgebende Regendauer	Bemessung r _(15,2) :	157,8 l/(s*h)
15 Minuten	Notentässerung r _(15,30) :	294,4 l/(s*h)

örtliche Reg	rtliche Regendaten :																	
							Wie	ederkel	nrzeit 7	Г [а]								
	hN	rN	hN	rN	hN	rN	hN	rN	hN	rN	hN	rN	hN	rN	hN	rN	hN	rN
D [min, h]	1a	1a	2a	2a	3a	3a	5a	5a	10a	10a	20a	20a	30a	30a	50a	50a	100a	100a
5 min	5,7	190,0	7,6	253,3	8,8	293,3	10,3	343,3	12,2	406,7	14,2	473,3	15,4	513,3	16,8	560,0	18,8	626,7
10 min	8,9	148,3	11,6	193,3	13,1	218,3	15,1	251,7	17,7	295,0	20,4	340,0	21,9	365,0	23,9	398,3	26,6	443,3
15 min	11,0	122,2	14,2	157,8	16,0	177,8	18,3	203,3	21,5	238,9	24,7	274,4	26,5	294,4	28,8	320,0	32,0	355,6
20 min	12,5	104,2	16,0	133,3	18,1	150,8	20,8	173,3	24,3	202,5	27,9	232,5	30,0	250,0	32,6	271,7	36,2	301,7
30 min	14,4	80,0	18,6	103,3	21,1	117,2	24,3	135,0	28,5	158,3	32,8	182,2	35,2	195,6	38,4	213,3	42,6	236,7
45 min	16,0	59,3	21,1	78,1	24,0	88,9	27,8	103,0	32,8	121,5	37,9	140,4	40,8	151,1	44,6	165,2	49,6	183,7
60 min	17,0	47,2	22,7	63,1	26,1	72,5	30,3	84,2	36,0	100,0	41,7	115,8	45,1	125,3	49,3	136,9	55,0	152,8
90 min	18,4	34,1	24,8	45,9	28,5	52,8	33,2	61,5	39,6	73,3	45,9	85,0	49,7	92,0	54,4	100,7	60,7	112,4
2 h	19,5	27,1	26,4	36,7	30,4	42,2	35,5	49,3	42,3	58,8	49,2	68,3	53,2	73,9	58,3	81,0	65,2	90,6
3 h	21,2	19,6	28,8	26,7	33,3	30,8	38,9	36,0	46,6	43,1	54,2	50,2	58,7	54,4	64,3	59,5	72,0	66,7
4 h	22,4	15,6	30,7	21,3	35,5	24,7	41,6	28,9	49,8	34,6	58,1	40,3	62,9	43,7	69,0	47,9	77,2	53,6
6 h	24,3	11,3	33,5	15,5	38,8	18,0	45,6	21,1	54,8	25,4	64,0	29,6	69,3	32,1	76,1	35,2	85,3	39,5
9 h	26,3	8,1	36,5	11,3	42,5	13,1	50,1	15,5	60,3	18,6	70,5	21,8	76,5	23,6	84,0	25,9	94,2	29,1
12 h	27,9	6,5	38,9	9,0	45,4	10,5	53,5	12,4	64,5	14,9	75,5	17,5	82,0	19,0	90,1	20,9	101,1	23,4
18 h	30,2	4,7	42,5	6,6	49,7	7,7	58,7	9,1	71,0	11,0	83,3	12,9	90,5	14,0	99,5	15,4	111,8	17,3
24 h	32,0	3,7	45,2	5,2	53,0	6,1	62,8	7,3	76,0	8,8	89,2	10,3	97,0	11,2	106,8	12,4	120,0	13,9
48 h	39,7	2,3	53,6	3,1	61,7	3,6	72,0	4,2	85,9	5,0	99,8	5,8	107,9	6,2	118,2	6,8	132,1	7,6
72 h	45,0	1,7	59,3	2,3	67,7	2,6	78,2	3,0	92,5	3,6	106,8	4,1	115,2	4,4	125,7	4,8	140,0	5,4

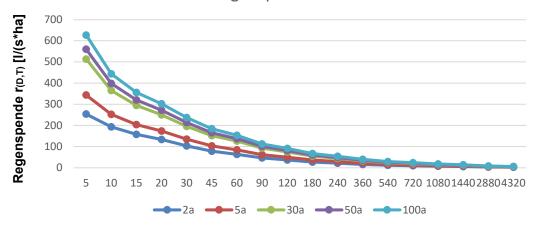
Bauvorhaben: DEGEWO, Rudower Straße Berlin Datum: 20.07.2022
Projekt Nr.: BG0108 Bearbeiter: I.Wiesner

Teilbereich:

Überflutungsnachweis - Ermittlung der befestigten und Abflusswirksamen Flächen nach DIN 1986-100

Bezeichnung	Fläche	Abfluss- beiwert	Abflusswirk- same Fläche	Bemerkungen
	[m²]	С	[m²]	
Dachfläche	421,3	1,0	421,3	Geb. Nord
Dachfläche	889,4	1,0	889,4	Geb. Süd
Pflaster / Platten in Sand	553,3	0,7	387,3	Fußwege
Pflasterflächen mit Fugen > 15% (ab 10 c	1230,3	0,6	738,2	Rasengitterfl.

Summe der Flächen A(ges)	3094,3	[m²]	
Resultierender mittlerer Abflussbeiwert C	0,79	[-]	
Summe der abflusswirksamen Flächen Au	2436,2	[m²]	
Summe Gebäudedachfläche ADach	1310,7	[m²]	
Resultierender Abflussbeiwert Gebäudedachflächen CDach	1,00	[-]	
Summe befestigter Flächen außerhalb von Gebäuden AFaG	1783,6	[m²]	
Resultierender Abflussbeiwert CFaG	0,63	[-]	
Anteil der Dachfläche ADach / Ages	42,4	[%]	
Spitzenabflussbeiwert Cs- gem. DIN EN 1986 - 100			
Dachfläche		1,00	
Betonfläche / Rampe		1,00	
· Asphalt		0,90	
 Pflaster mit Fugenverguss / Flächen mit Fugendichtung 		0,80	
 Kiesdächer 		0,80	
 Begrünte Dachfläche -> Extensiv ab 10 cm Aufbaudicke 		0,20	
 Begrünte Dachfläche -> Extensiv bis 10 cm Aufbaudicke 		0,30	
 Pflaster / Platten in Sand 		0,70	
 Pflasterflächen mit Fugen > 15% (ab 10 cm x 10 cm und kleiner) 		0,60	
 wassergebundene Flächen 		0,70	
 Kinderspielplätze mit Teilbefestigung 		0,20	
Kunststoffrasen		0,50	
 Rasenflächen 		0,10	
 Wasserdurchlässige Flächen 		0,10	
 Schotterfläche 		0,50	


Teilbereich:

Überflutungsnachweis - Ermittlung der befestigten und Abflusswirksamen Flächen nach DIN 1986-100

örtliche Reg	örtliche Regendaten :																	
							Wie	ederkel	nrzeit 7	Г [а]								
	hN	rN	hN	rN	hN	rN	hN	rN	hN	rN	hN	rN	hN	rN	hN	rN	hN	rN
D [min, h]	1a	1a	2a	2a	3a	3a	5a	5a	10a	10a	20a	20a	30a	30a	50a	50a	100a	100a
5 min	5,7	190,0	7,6	253,3	8,8	293,3	10,3	343,3	12,2	406,7	14,2	473,3	15,4	513,3	16,8	560,0	18,8	626,7
10 min	8,9	148,3	11,6	193,3	13,1	218,3	15,1	251,7	17,7	295,0	20,4	340,0	21,9	365,0	23,9	398,3	26,6	443,3
15 min	11,0	122,2	14,2	157,8	16,0	177,8	18,3	203,3	21,5	238,9	24,7	274,4	26,5	294,4	28,8	320,0	32,0	355,6
20 min	12,5	104,2	16,0	133,3	18,1	150,8	20,8	173,3	24,3	202,5	27,9	232,5	30,0	250,0	32,6	271,7	36,2	301,7
30 min	14,4	80,0	18,6	103,3	21,1	117,2	24,3	135,0	28,5	158,3	32,8	182,2	35,2	195,6	38,4	213,3	42,6	236,7
45 min	16,0	59,3	21,1	78,1	24,0	88,9	27,8	103,0	32,8	121,5	37,9	140,4	40,8	151,1	44,6	165,2	49,6	183,7
60 min	17,0	47,2	22,7	63,1	26,1	72,5	30,3	84,2	36,0	100,0	41,7	115,8	45,1	125,3	49,3	136,9	55,0	152,8
90 min	18,4	34,1	24,8	45,9	28,5	52,8	33,2	61,5	39,6	73,3	45,9	85,0	49,7	92,0	54,4	100,7	60,7	112,4
2 h	19,5	27,1	26,4	36,7	30,4	42,2	35,5	49,3	42,3	58,8	49,2	68,3	53,2	73,9	58,3	81,0	65,2	90,6
3 h	21,2	19,6	28,8	26,7	33,3	30,8	38,9	36,0	46,6	43,1	54,2	50,2	58,7	54,4	64,3	59,5	72,0	66,7
4 h	22,4	15,6	30,7	21,3	35,5	24,7	41,6	28,9	49,8	34,6	58,1	40,3	62,9	43,7	69,0	47,9	77,2	53,6
6 h	24,3	11,3	33,5	15,5	38,8	18,0	45,6	21,1	54,8	25,4	64,0	29,6	69,3	32,1	76,1	35,2	85,3	39,5
9 h	26,3	8,1	36,5	11,3	42,5	13,1	50,1	15,5	60,3	18,6	70,5	21,8	76,5	23,6	84,0	25,9	94,2	29,1
12 h	27,9	6,5	38,9	9,0	45,4	10,5	53,5	12,4	64,5	14,9	75,5	17,5	82,0	19,0	90,1	20,9	101,1	23,4
18 h	30,2	4,7	42,5	6,6	49,7	7,7	58,7	9,1	71,0	11,0	83,3	12,9	90,5	14,0	99,5	15,4	111,8	17,3
24 h	32,0	3,7	45,2	5,2	53,0	6,1	62,8	7,3	76,0	8,8	89,2	10,3	97,0	11,2	106,8	12,4	120,0	13,9
48 h	39,7	2,3	53,6	3,1	61,7	3,6	72,0	4,2	85,9	5,0	99,8	5,8	107,9	6,2	118,2	6,8	132,1	7,6
72 h	45,0	1,7	59,3	2,3	67,7	2,6	78,2	3,0	92,5	3,6	106,8	4,1	115,2	4,4	125,7	4,8	140,0	5,4

Regenspenden für Überflutungsnachweis :								
Regenspende D = 5 min, T = 30 Jahre	r(5,30) in I / (s*ha)	513,3						
Regenspende D = 10 min, T = 30 Jahre	r(10,30) in I / (s*ha)	365,0						
Regenspende D = 15 min, T = 30 Jahre	r(15,30) in I / (s*ha)	294,4						

Regenspendenlinien

Bauvorhaben: DEGEWO, Rudower Straße Berlin Datum: 20.07.2022
Projekt Nr.: BG0108 Bearbeiter: I.Wiesner

Teilbereich:

Überflutungsnachweis nach DIN 1986-100 Nachweis nach Gleichung 20

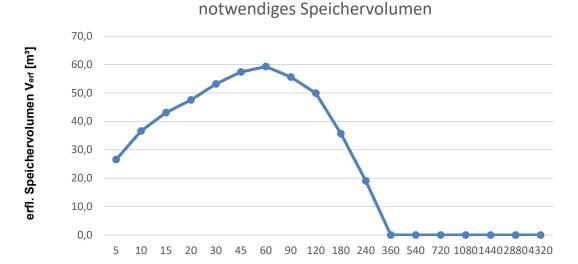
VRück = [r(D,30) * Ages - (r(D,2) * ADach * CDach + r(D,2) * AFaG * CFaG)] * D * 60 * 10^-7

r(D,30)	365,0	[l / s * ha]
- (- ,-)	/ -	
r(D.2)	193.3	[l / s * ha]
D	10	[min]
CFaG	0,63	[-]
AFaG	1783,6	[m²]
CDach	1,00	[-]
ADach	1310,7	[m²]
Ages	3094,3	[m²]
	ADach CDach AFaG CFaG D	ADach 1310,7 CDach 1,00 AFaG 1783,6 CFaG 0,63 D 10

Überflutungsnachweis nach DIN 1986-100 Nachweis nach Gleichung 21

$Vrück = [r(D,30) * Ages / 10000 - Qvoll] * D * 60 * 10^-3$

gesamte Befestigte Fläche des Grundstückes	Ages	3094,3	[m²]
gesamte befestigte Fläche außerhalb von Gebäuden	AFaG	1783,6	[m²]
Regenspende D = 5 min, T = 30 Jahre	r(5,30)	513,3	[l / s * ha]
Regenspende D = 10 min, T = 30 Jahre	r(10,30)	365,0	[l / s * ha]
Regenspende D = 15 min, T = 30 Jahre	r(15,30)	294,4	[l / s * ha]
maximaler Abfluss der Grundleitung bei Vollfüllung	QVoll	5,7	[l / s]
Regenwassermenge für D = 5 min, T = 30 Jahre Regenwassermenge für D = 10 min, T = 30 Jahre Regenwassermenge für D = 15 min, T = 30 Jahre	VRück, r(5,30) VRück, r(10,30) VRück, r(15,30)	46,0 64,4 76,9	[m³] [m³] [m³]
Rückzuhaltende Regenwassermenge Abschätzung der Einstauhöhe auf ebener Fläche	VRück h	76,9 0,04	[m³] [m]



Teilbereich:

Überflutungsnachweis nach DWA-A 117 und DIN 1986-100 Nachweis mir Gleichung 22

$V_{RRR} = A_u * r_{(D,t)} / 10000 * D * fz * 0,06 - D * fz * Q_{Dr} * 0,06$ befestigte Einzugsgebietsfläche 3094,3 Ages $[m^2]$ resultierender Abflussbeiwert C Cm.res 0,50 [-] Abflusswirksame Fläche 1547,2 $[m^2]$ Au Drosselabfluss des Regenrückhalteraumes 5,7 [I/s]QDr Wiederkehrzeit des Berechnungsregens Τ 30 [Jahr] Zuschlagfaktor fz 1,2 [-] maßgebende Dauer des Berechnungsregens D 60 [min] maßgebende Regenspende Bemessung VRRR r(D,T) 125,3 [l / (s*ha)] Rückzuhaltende Regenwassermenge 59,3 **V**Rück [m³]

D [min]	5	10	15	20	30	45	60	90	120	180	240	360	540	720	1080	1440	2880	4320	
rN 30a	513,3	365,0	294,4	250,0	195,6	151,1	125,3	92,0	73,9	54,4	43,7	32,1	23,6	19,0	14,0	11,2	6,2	4,4	
VRRR [m³]	26,6	36,6	43,1	47,5	53,1	57,4	59,3	55,6	49,9	35,7	19,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	

Regendauer D [min]

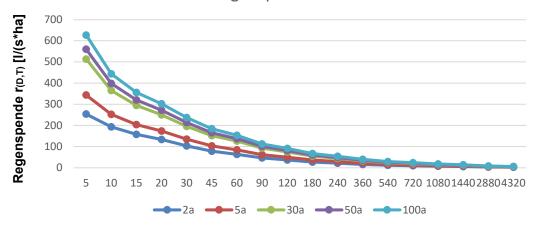
Bauvorhaben: DEGEWO, Rudower Straße Berlin Datum: 20.07.2022
Projekt Nr.: BG0108 Bearbeiter: I.Wiesner

Teilbereich:

Überflutungsnachweis - Ermittlung der befestigten und Abflusswirksamen Flächen nach DIN 1986-100

Bezeichnung	Fläche	Abfluss- beiwert	Abflusswirk- same Fläche	Bemerkungen
	[m²]	С	[m²]	
Dachfläche	421,3	1,0	421,3	Geb. Nord
Dachfläche	889,4	1,0	889,4	Geb. Süd
Pflaster / Platten in Sand	553,3	0,7	387,3	Fußwege
Pflasterflächen mit Fugen > 15% (ab 10 c	1230,3	0,6	738,2	Rasengitterfl.

Summe der Flächen A(ges)	3094,3	[m²]	
Resultierender mittlerer Abflussbeiwert C	0,79	[-]	
Summe der abflusswirksamen Flächen Au	2436,2	[m²]	
Summe Gebäudedachfläche ADach	1310,7	[m²]	
Resultierender Abflussbeiwert Gebäudedachflächen CDach	1,00	[-]	
Summe befestigter Flächen außerhalb von Gebäuden AFaG	1783,6	[m²]	
Resultierender Abflussbeiwert CFaG	0,63	[-]	
Anteil der Dachfläche ADach / Ages	42,4	[%]	
Spitzenabflussbeiwert Cs- gem. DIN EN 1986 - 100			
Dachfläche		1,00	
Betonfläche / Rampe		1,00	
· Asphalt		0,90	
 Pflaster mit Fugenverguss / Flächen mit Fugendichtung 		0,80	
 Kiesdächer 		0,80	
 Begrünte Dachfläche -> Extensiv ab 10 cm Aufbaudicke 		0,20	
 Begrünte Dachfläche -> Extensiv bis 10 cm Aufbaudicke 		0,30	
 Pflaster / Platten in Sand 		0,70	
 Pflasterflächen mit Fugen > 15% (ab 10 cm x 10 cm und kleiner) 		0,60	
 wassergebundene Flächen 		0,70	
 Kinderspielplätze mit Teilbefestigung 		0,20	
Kunststoffrasen		0,50	
 Rasenflächen 		0,10	
 Wasserdurchlässige Flächen 		0,10	
 Schotterfläche 		0,50	


Teilbereich:

Überflutungsnachweis - Ermittlung der befestigten und Abflusswirksamen Flächen nach DIN 1986-100

örtliche Reg	jendat	en:																
							Wie	ederkel	nrzeit 7	Г [а]								
	hN	rN	hN	rN	hN	rN	hN	rN	hN	rN	hN	rN	hN	rN	hN	rN	hN	rN
D [min, h]	1a	1a	2a	2a	3a	3a	5a	5a	10a	10a	20a	20a	30a	30a	50a	50a	100a	100a
5 min	5,7	190,0	7,6	253,3	8,8	293,3	10,3	343,3	12,2	406,7	14,2	473,3	15,4	513,3	16,8	560,0	18,8	626,7
10 min	8,9	148,3	11,6	193,3	13,1	218,3	15,1	251,7	17,7	295,0	20,4	340,0	21,9	365,0	23,9	398,3	26,6	443,3
15 min	11,0	122,2	14,2	157,8	16,0	177,8	18,3	203,3	21,5	238,9	24,7	274,4	26,5	294,4	28,8	320,0	32,0	355,6
20 min	12,5	104,2	16,0	133,3	18,1	150,8	20,8	173,3	24,3	202,5	27,9	232,5	30,0	250,0	32,6	271,7	36,2	301,7
30 min	14,4	80,0	18,6	103,3	21,1	117,2	24,3	135,0	28,5	158,3	32,8	182,2	35,2	195,6	38,4	213,3	42,6	236,7
45 min	16,0	59,3	21,1	78,1	24,0	88,9	27,8	103,0	32,8	121,5	37,9	140,4	40,8	151,1	44,6	165,2	49,6	183,7
60 min	17,0	47,2	22,7	63,1	26,1	72,5	30,3	84,2	36,0	100,0	41,7	115,8	45,1	125,3	49,3	136,9	55,0	152,8
90 min	18,4	34,1	24,8	45,9	28,5	52,8	33,2	61,5	39,6	73,3	45,9	85,0	49,7	92,0	54,4	100,7	60,7	112,4
2 h	19,5	27,1	26,4	36,7	30,4	42,2	35,5	49,3	42,3	58,8	49,2	68,3	53,2	73,9	58,3	81,0	65,2	90,6
3 h	21,2	19,6	28,8	26,7	33,3	30,8	38,9	36,0	46,6	43,1	54,2	50,2	58,7	54,4	64,3	59,5	72,0	66,7
4 h	22,4	15,6	30,7	21,3	35,5	24,7	41,6	28,9	49,8	34,6	58,1	40,3	62,9	43,7	69,0	47,9	77,2	53,6
6 h	24,3	11,3	33,5	15,5	38,8	18,0	45,6	21,1	54,8	25,4	64,0	29,6	69,3	32,1	76,1	35,2	85,3	39,5
9 h	26,3	8,1	36,5	11,3	42,5	13,1	50,1	15,5	60,3	18,6	70,5	21,8	76,5	23,6	84,0	25,9	94,2	29,1
12 h	27,9	6,5	38,9	9,0	45,4	10,5	53,5	12,4	64,5	14,9	75,5	17,5	82,0	19,0	90,1	20,9	101,1	23,4
18 h	30,2	4,7	42,5	6,6	49,7	7,7	58,7	9,1	71,0	11,0	83,3	12,9	90,5	14,0	99,5	15,4	111,8	17,3
24 h	32,0	3,7	45,2	5,2	53,0	6,1	62,8	7,3	76,0	8,8	89,2	10,3	97,0	11,2	106,8	12,4	120,0	13,9
48 h	39,7	2,3	53,6	3,1	61,7	3,6	72,0	4,2	85,9	5,0	99,8	5,8	107,9	6,2	118,2	6,8	132,1	7,6
72 h	45,0	1,7	59,3	2,3	67,7	2,6	78,2	3,0	92,5	3,6	106,8	4,1	115,2	4,4	125,7	4,8	140,0	5,4

Regenspenden für Überflutungsnachweis :								
Regenspende D = 5 min, T = 30 Jahre	r(5,30) in I / (s*ha)	513,3						
Regenspende D = 10 min, T = 30 Jahre	r(10,30) in I / (s*ha)	365,0						
Regenspende D = 15 min, T = 30 Jahre	r(15,30) in I / (s*ha)	294,4						

Regenspendenlinien

Bauvorhaben: DEGEWO, Rudower Straße Berlin Datum: 20.07.2022
Projekt Nr.: BG0108 Bearbeiter: I.Wiesner

Teilbereich:

Überflutungsnachweis nach DIN 1986-100 Nachweis nach Gleichung 20

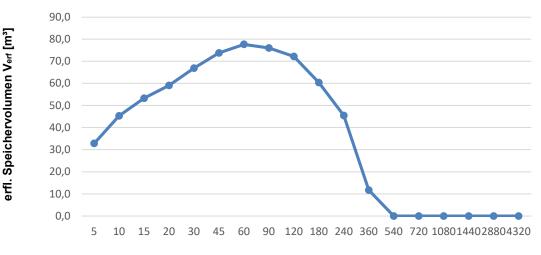
VRück = [r(D,30) * Ages - (r(D,2) * ADach * CDach + r(D,2) * AFaG * CFaG)] * D * 60 * 10^-7

r(D,30)	365,0	[l / s * ha]
- (- ,-)	/ -	
r(D.2)	193.3	[l / s * ha]
D	10	[min]
CFaG	0,63	[-]
AFaG	1783,6	[m²]
CDach	1,00	[-]
ADach	1310,7	[m²]
Ages	3094,3	[m²]
	ADach CDach AFaG CFaG D	ADach 1310,7 CDach 1,00 AFaG 1783,6 CFaG 0,63 D 10

Überflutungsnachweis nach DIN 1986-100 Nachweis nach Gleichung 21

$Vrück = [r(D,30) * Ages / 10000 - Qvoll] * D * 60 * 10^-3$

gesamte Befestigte Fläche des Grundstückes	Ages	3094,3	[m²]
gesamte befestigte Fläche außerhalb von Gebäuden	AFaG	1783,6	[m²]
Regenspende D = 5 min, T = 30 Jahre	r(5,30)	513,3	[l / s * ha]
Regenspende D = 10 min, T = 30 Jahre	r(10,30)	365,0	[l / s * ha]
Regenspende D = 15 min, T = 30 Jahre	r(15,30)	294,4	[l / s * ha]
maximaler Abfluss der Grundleitung bei Vollfüllung	QVoll	5,7	[l / s]
Regenwassermenge für D = 5 min, T = 30 Jahre Regenwassermenge für D = 10 min, T = 30 Jahre Regenwassermenge für D = 15 min, T = 30 Jahre	VRück, r(5,30) VRück, r(10,30) VRück, r(15,30)	46,0 64,4 76,9	[m³] [m³] [m³]
Rückzuhaltende Regenwassermenge Abschätzung der Einstauhöhe auf ebener Fläche	VRück h	76,9 0,04	[m³] [m]


Teilbereich:

Überflutungsnachweis nach DWA-A 117 und DIN 1986-100 Nachweis mir Gleichung 22

$V_{RRR} = A_u * r_{(D,t)} / 10000 * D * fz * 0,06 - D * fz * Q_{Dr} * 0,06$ befestigte Einzugsgebietsfläche Ages 3094,3 $[m^2]$ resultierender Abflussbeiwert C Cm.res 0,50 [-] Abflusswirksame Fläche 1547,2 $[m^2]$ Αu Drosselabfluss des Regenrückhalteraumes 5,7 [I/s]QDr Wiederkehrzeit des Berechnungsregens Τ 100 [Jahr] Zuschlagfaktor fz 1,2 [-] maßgebende Dauer des Berechnungsregens D 60 [min] maßgebende Regenspende Bemessung VRRR r(D,T) 152.8 [l / (s*ha)] Rückzuhaltende Regenwassermenge **V**Rück 77,7 [m³]

D [min]	5	10	15	20	30	45	60	90	120	180	240	360	540	720	1080	1440	2880	4320	
rN 100a	626,7	443,3	355,6	301,7	236,7	183,7	152,8	112,4	90,6	66,7	53,6	39,5	29,1	23,4	17,3	13,9	7,6	5,4	
VRRR [m³]	32,9	45,3	53,3	59,1	66,9	73,7	77,7	76,0	72,2	60,4	45,5	11,7	0,0	0,0	0,0	0,0	0,0	0,0	

notwendiges Speichervolumen

Regendauer D [min]

Bemessung von Rückhalteräumen im Näherungsverfahren nach Arbeitsblatt DWA-A 117

Neubau	Wohnhä	user
Rudowe	r Straße	184
Berlin		

Auftraggeber:

DEGEWO

Rückhalteraum:

Rudower Straße, Dachflächen und befestigte Flächen

Eingabedaten:

$$V_{s,u} = (r_{D,n} - q_{Dr,R,u}) * (D - D_{R\ddot{U}B}) * f_Z * f_A * 0.06 \quad mit \ q_{Dr,R,u} = (Q_{Dr} + Q_{Dr,R\ddot{U}B} - Q_{T,d,aM}) / A_u$$

Einzugsgebietsfläche	A_{E}	m^2	3.574
Abflussbeiwert gem. Tabelle 2 (DWA-A 138)	Ψ_{m}	-	0,55
undurchlässige Fläche	A_{u}	m^2	1.966
vorgelagertes Volumen RÜB	$V_{R\ddot{U}B}$	m^3	
vorgegebener Drosselabfluss RÜB	$Q_{Dr,R\ddot{U}B}$	l/s	
Trockenwetterabfluss	$Q_{T,d,aM}$	l/s	
Drosselabfluss	Q_{Dr}	l/s	7,3
Drosselabflussspende bezogen auf A _u	$q_{Dr,R,u}$	l/(s*ha)	37,1
gewählte Länge der Sohlfläche (Rechteckbecken)	L _s	m	
gewählte Breite der Sohlfläche (Rechteckbecken)	b _s	m	
gewählte max. Einstauhöhe (Rechteckbecken)	z	m	
gewählte Böschungsneigung (Rechteckbecken)	1:m	-	
gewählte Regenhäufigkeit	n	1/Jahr	0,2
Zuschlagsfaktor	f_Z	-	1,20
Fließzeit zur Berechnung des Abminderungsfaktors	t _f	min	
Abminderungsfaktor	f_A	=	

Ergebnisse:

maßgebende Dauer des Bemessungsregens	D	min	30
maßgebende Regenspende	$r_{D,n}$	l/(s*ha)	114,4
erforderliches spez. Speichervolumen	$V_{erf,s,u}$	m³/ha	167
erforderliches Speichervolumen	V _{erf}	m ³	33
vorhandenes Speichervolumen	V	m ³	
Beckenlänge an Böschungsoberkante	L _o	m	
Beckenbreite an Böschungsoberkante	b _o	m	
Entleerungszeit	t _∈	h	

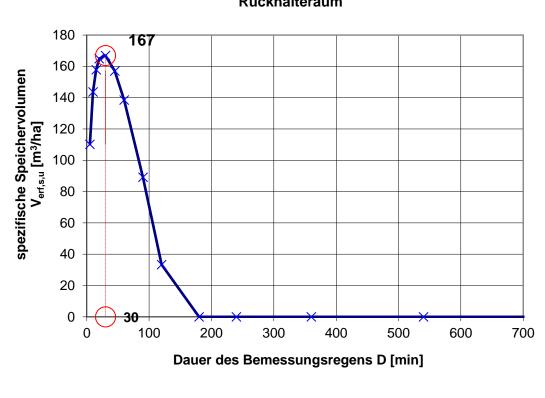
Bemerkungen:

Bemessungsprogramm ATV-A138.XLS Version 7.4.1 © 2018 - Institut für technisch-wissenschaftliche Hydrologie GmbH Engelbosteler Damm 22, 30167 Hannover, Tel.: 0511-97193-0, Fax: 0511-97193-77, www.itwh.de Lizenznummer: ATV-0810-1062

Bemessung von Rückhalteräumen im Näherungsverfahren nach Arbeitsblatt DWA-A 117

örtliche Regendaten:

D [min]	r _{D,n} [l/(s*ha)]
5	343,3
10	236,7
15	183,3
20	151,7
30	114,4
45	85,6
60	69,2
90	50,9
120	41,0
180	30,0
240	24,0
360	17,5
540	12,8
720	10,2
1080	7,5
1440	5,9
2880	3,5
4320	2,5


Fülldauer RÜB:

D _{RÜB} [min]
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0

Berechnung:

V _{erf,s,u} [m³/ha]
110
144
158
165
167
157
139
89
33
0
0
0
0
0
0
0
0
0

Rückhalteraum

Bemessungsprogramm ATV-A138.XLS Version 7.4.1 © 2018 - Institut für technisch-wissenschaftliche Hydrologie GmbH Engelbosteler Damm 22, 30167 Hannover, Tel.: 0511-97193-0, Fax: 0511-97193-77, www.itwh.de Lizenznummer: ATV-0810-1062

Seite 2

Ermittlung der abflusswirksamen Flächen A_u nach Arbeitsblatt DWA-A 138

Flächentyp	Art der Befestigung mit empfohlenen mittleren Abflussbeiwerten Ψ_{m}	Teilfläche A _{E,i} [m ²]	Ψ _{m,i} gewählt	Teilfläche A _{u,i} [m²]
Sobräadoob	Metall, Glas, Schiefer, Faserzement: 0,9 - 1,0	85	1,00	85
Schrägdach	Ziegel, Dachpappe: 0,8 - 1,0			
Flachdach	Metall, Glas, Faserzement: 0,9 - 1,0			
(Neigung bis 3°	Dachpappe: 0,9			
oder ca. 5%)	Kies: 0,7			
Gründach (Neigung bis 15°	humusiert <10 cm Aufbau: 0,5	1.675	0,50	838
oder ca. 25%)	humusiert >10 cm Aufbau: 0,3			
	Asphalt, fugenloser Beton: 0,9	53	0,90	48
	Pflaster mit dichten Fugen: 0,75	1.115	0,75	836
	fester Kiesbelag: 0,6			
Straßen, Wege und Plätze (flach)	Pflaster mit offenen Fugen: 0,5			
	lockerer Kiesbelag, Schotterrasen: 0,3			
	Verbundsteine mit Fugen, Sickersteine: 0,25	646	0,25	162
	Rasengittersteine: 0,15			
Böschungen,	toniger Boden: 0,5			
Bankette und	lehmiger Sandboden: 0,4			
Gräben	Kies- und Sandboden: 0,3			
Gärten, Wiesen	flaches Gelände: 0,0 - 0,1			
und Kulturland	steiles Gelände: 0,1 - 0,3			

Gesamtfläche Einzugsgebiet A _E [m²]	3.574
Summe undurchlässige Fläche A _u [m²]	1.969
resultierender mittlerer Abflussbeiwert Ψ_{m} [-]	0,55

Bemerkungen:

Rudower Str. 184

Flächen Regenrückhaltung Rückhaltebecken

Starkniederschlagshöhen und -spenden gemäß KOSTRA-DWD-2020

Rasterfeld 107191

(Zeile 107, Spalte 191)

Regenspende und Bemessungsniederschlagswerte in Abhängigkeit von Wiederkehrzeit T und Dauerstufe D

									Wied	arkahrz	oit T								
Daular	Wiederkehrzeit T Dauerstufe D 1 a 2 a 3 a 5 a 10 a 20 a 30 a 50 a 100 a																		
min	Stule D	1 a mm	l / (s ha)	z a mm	l / (s ha)	эa mm	l / (s ha)	o a mm	l / (s ha)	mm	l / (s ha)	zu a mm	l / (s ha)	mm	l / (s ha)	ou a mm	l / (s ha)	mm	l / (s ha)
5	Sta	6,2	206.7	7.9	263,3	8.9	296,7	10,3	343,3	12,3	410,0	14,4	480.0	15.7	523,3	17,5	583,3	20,0	666.7
10		8,5	141,7	10,8	180,0	12,3	205,0	14,2	236,7	16,9	281,7	19,8	330,0	21,6	360,0	24,1	401,7	27,5	458,3
15		9,9	110,0	12,6	140,0	14,3	158,9	16,5	183,3	19,7	218,9	23,0	255,6	25,2	280,0	28,0	311,1	32,1	356,7
20		10,9	90,8	13,9	115,8	15,8	131,7	18,2	151,7	21,7	180,8	25,4	211,7	27,8	231,7	30,9	257,5	35,3	294,2
30		12,3	68,3	15,7	87,2	17,8	98,9	20,6	114,4	24,6	136,7	28,7	159,4	31,4	174,4	34,9	193,9	40,0	222,2
45		13,8	51,1	17,6	65,2	20,0	74,1	23,1	85,6	27,5	101,9	32,1	118,9	35,2	130,4	39,1	144,8	44,8	165,9
60	1	14,9	41,4	19,0	52,8	21,5	59,7	24,9	69,2	29,7	82,5	34,7	96,4	37,9	105,3	42,2	117,2	48,3	134,2
90	1,5	16,4	30,4	21,0	38,9	23,8	44,1	27,5	50,9	32,8	60,7	38,3	70,9	41,9	77,6	46,6	86,3	53,4	98,9
120	2	17,6	24,4	22,5	31,3	25,5	35,4	29,5	41,0	35,2	48,9	41,1	57,1	44,9	62,4	50,0	69,4	57,2	79,4
180	3	19,4	18,0	24,7	22,9	28,0	25,9	32,4	30,0	38,7	35,8	45,1	41,8	49,4	45,7	54,9	50,8	62,9	58,2
240	4	20,7	14,4	26,4	18,3	29,9	20,8	34,6	24,0	41,3	28,7	48,2	33,5	52,7	36,6	58,7	40,8	67,1	46,6
360	6	22,6	10,5	28,9	13,4	32,8	15,2	37,9	17,5	45,2	20,9	52,8	24,4	57,8	26,8	64,2	29,7	73,6	34,1
540	9	24,8	7,7	31,6	9,8	35,9	11,1	41,5	12,8	49,5	15,3	57,8	17,8	63,2	19,5	70,3	21,7	80,5	24,8
720	12	26,4	6,1	33,7	7,8	38,2	8,8	44,2	10,2	52,7	12,2	61,6	14,3	67,3	15,6	74,9	17,3	85,8	19,9
1080	18	28,9	4,5	36,8	5,7	41,8	6,5	48,3	7,5	57,6	8,9	67,3	10,4	73,6	11,4	81,9	12,6	93,7	14,5
1440	24	30,7	3,6	39,2	4,5	44,5	5,2	51,4	5,9	61,4	7,1	71,6	8,3	78,4	9,1	87,2	10,1	99,8	11,6
2880	48	35,7	2,1	45,6	2,6	51,7	3,0	59,8	3,5	71,4	4,1	83,3	4,8	91,1	5,3	101,4	5,9	116,1	6,7
4320	72	39,0	1,5	49,8	1,9	56,5	2,2	65,3	2,5	77,9	3,0	91,0	3,5	99,5	3,8	110,7	4,3	126,8	4,9
5760	96	41,5	1,2	53,0	1,5	60,1	1,7	69,5	2,0	83,0	2,4	96,8	2,8	105,9	3,1	117,8	3,4	134,9	3,9
7200	120	43,6	1,0	55,7	1,3	63,1	1,5	72,9	1,7	87,1	2,0	101,6	2,4	111,2	2,6	123,7	2,9	141,6	3,3
8640	144	45,3	0,9	57,9	1,1	65,7	1,3	75,9	1,5	90,6	1,7	105,7	2,0	115,7	2,2	128,7	2,5	147,3	2,8
10080	168	46,9	0,8	59,9	1,0	67,9	1,1	78,4	1,3	93,7	1,5	109,3	1,8	119,6	2,0	133,0	2,2	152,3	2,5

Seite 1 von 3

Starkniederschlagshöhen und -spenden gemäß KOSTRA-DWD-2020

Rasterfeld 107191

(Zeile 107, Spalte 191)

Örtliche Unsicherheiten in Abhängigkeit von Wiederkehrzeit T und Dauerstufe D

Wiederkehrzeit T										
Dauer min	stufe D Std	1 a ± %	2 a ± %	3 a ± %	5 a ± %	10 a ± %	20 a ± %	30 a ± %	50 a ± %	100 a ± %
5		13	12	12	12	12	13	13	13	13
10		10	12	13	14	15	16	16	17	17
15		12	14	15	16	17	18	19	19	20
20		13	16	17	18	19	20	21	21	22
30		15	17	18	20	21	22	22	23	24
45		16	18	20	21	22	23	24	24	25
60	1	16	19	20	21	22	23	24	25	25
90	1,5	16	19	20	21	23	24	24	25	25
120	2	16	18	20	21	22	23	24	24	25
180	3	15	18	19	20	22	23	23	24	25
240	4	15	17	19	20	21	22	23	23	24
360	6	14	17	18	19	20	21	22	22	23
540	9	13	16	17	18	19	20	21	21	22
720	12	13	15	16	17	19	20	20	21	21
1080	18	12	14	15	17	18	19	19	20	20
1440	24	12	14	15	16	17	18	19	19	20
2880	48	12	13	14	15	16	17	17	18	18
4320	72	12	13	14	15	16	16	17	17	18
5760	96	12	13	14	15	15	16	17	17	18
7200	120	13	13	14	15	15	16	16	17	17
8640	144	13	13	14	15	15	16	16	17	17
10080	168	13	14	14	15	15	16	16	17	17

Parameter für abweichende T und D

Lokationsparameter ξ (Xi)

15,47962382

Skalenparameter α (Alpha)

5,95230636

Formparameter κ (Kappa)

-0,1

1. Koutsoyiannis-Parameter θ (Theta)

0,0521766

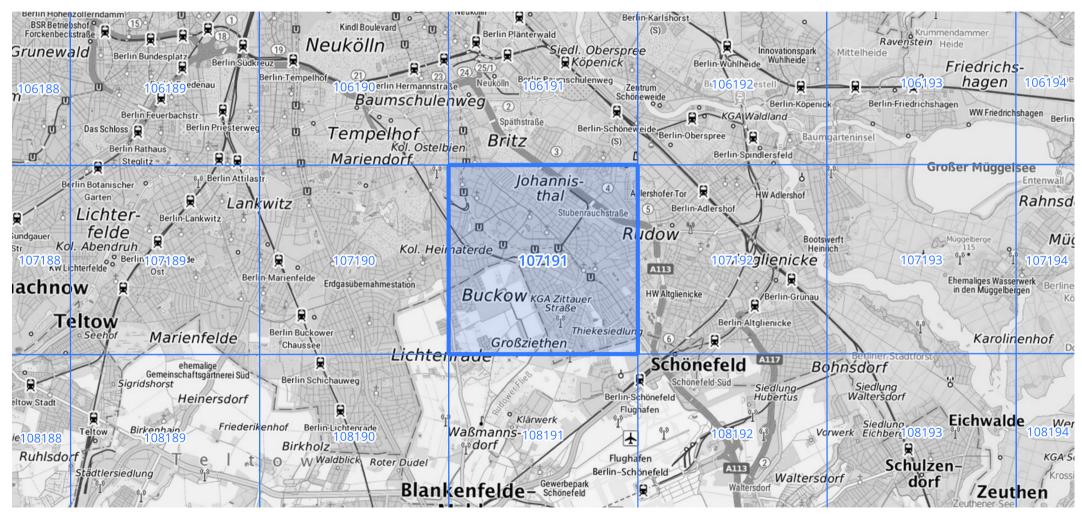
2. Koutsoyiannis-Parameter η (Eta)

0,78350768

Parameter für dauerstufenübergreifende Extremwertschätzung nach KOUTSOYIANNIS et al. 1998.

Siehe auch Anwendungshilfe zu KOSTRA-DWD-2020 des Deutschen Wetterdienstes.

Seite 2 von 3



Starkniederschlagshöhen und -spenden gemäß KOSTRA-DWD-2020

Rasterfeld 107191

(Zeile 107, Spalte 191)

Übersichtskarte des Rasterfeldes 107191, M 1:100 000

Quelle Rasterdaten: KOSTRA-DWD-2020 des Deutschen Wetterdienstes, Stand 12/2022.

Seite 3 von 3

Ermittlung der befestigten (A_{Dach} und A_{FaG}) und abflusswirksamen Flächen (A_u) nach DIN 1986-100

Nr.	Art der Befestigung mit Abflussbeiwerten C nach DIN 1986 Tabelle 9	Teil-fläche A [m²]	C _s [-]	C _m	A _{u,s} für Bem. [m²]	A _{u,m} für V _{rrr} [m²]
	Wasserundurchlässige Flächen	<u>!</u>			!	
	Dachflächen	l				
	Schrägdach: Metall, Glas, Schiefer, Faserzement		1,00	0,90		
	Schrägdach: Ziegel, Abdichtungsbahnen		1,00	0,80		
	Flachdach mit Neigung bis 3° oder etwa 5 %: Metall, Glas, Faserzement		1,00	0,90		
	Flachdach mit Neigung bis 3° oder etwa 5 %: Abdichtungsbahnen	85	1,00	0,90	85	77
	Flachdach mit Neigung bis 3° oder etwa 5 %: Kiesschüttung		0,80	0,80		
	begrünte Dachflächen: Extensivbegrünung (> 5°)		0,70	0,40		
	begrünte Dachflächen: Intensivbegrünung, ab 30 cm Aufbaudicke (≤ 5°)		0,20	0,10		
	begrünte Dachflächen: Extensivbegrünung, ab 10 cm Aufbaudicke (≤ 5°)		0,40	0,20		
	begrünte Dachflächen: Extensivbegrünung, unter 10 cm Aufbaudicke (≤ 5°)	1.675	0,50	0,30	838	503
	Verkehrsflächen (Straßen, Plätz	e, Zufahrten	, Wege	e)	•	
	Betonflächen		1,00	0,90		
	Schwarzdecken (Asphalt)	53	1,00	0,90	53	48
	befestigte Flächen mit Fugendichtung, z.B. Pflaster mit Fugenverguss		1,00	0,80		
	Rampen					
	Neigung zum Gebäude, unabhängig von der Neigung und der Befestigungsart		1,00	1,00		
	Teildurchlässige und schwach ableitende Flächen					
	Verkehrsflächen (Straßen, Plätz	e, Zufahrten	, Wege	e)		
	Betonsteinpflaster, in Sand oder Schlacke verlegt, Flächen mit Platten	115	0,90	0,70	104	81
	Pflasterflächen, mit Fugenanteil > 15 % z. B. 10 cm × 10 cm und kleiner, fester Kiesbelag		0,70	0,60		
	wassergebundene Flächen		0,90	0,70		
	lockerer Kiesbelag, Schotterrasen z. B. Kinderspielplätze		0,30	0,20		
	Verbundsteine mit Sickerfugen, Sicker- / Drainsteine	646	0,40	0,25	258	162
	Rasengittersteine (mit häufigen Verkehrsbelastungen z. B. Parkplatz)		0,40	0,20		
	Rasengittersteine (ohne häufige Verkehrsbelastungen z. B. Feuerwehrzufahrt)		0,20	0,10		

Berechnungsprogramm GRUNDSTÜCK.XLS 1.3.3 © 2017 - Institut für technisch-wissenschaftliche Hydrologie GmbH Engelbosteler Damm 22, 30167 Hannover, Tel.: 0511-97193-0, Fax: 0511-97193-77

Lizenznummer: DIN-1024-1064

Ermittlung der befestigten (A_{Dach} und A_{FaG}) und abflusswirksamen Flächen (A_u) nach DIN 1986-100

Nr.	Art der Befestigung mit Abflussbeiwerten C nach DIN 1986 Tabelle 9	Teil-fläche A [m²]	C _s	C _m [-]	A _{u,s} für Bem. [m²]	A _{u,m} für V _{rrr} [m²]				
2	2 Teildurchlässige und schwach ableitende Flächen									
	Sportflächen mit Dränung									
	Kunststoff-Flächen, Kunststoffrasen		0,60	0,50						
	Tennenflächen		0,30	0,20						
	Rasenflächen		0,20	0,10						
3	Parkanlagen, Rasenflächen, Gärten									
	flaches Gelände	5.269	0,20	0,10	1.054	527				
	steiles Gelände		0,30	0,20	·					

Ergebnisgrößen	
Summe Fläche A _{ges} [m²]	7843
resultierender Spitzenabflussbeiwert C_{s} [-]	0,30
resultierender mittlerer Abflussbeiwert C _m [-]	0,18
Summe der abflusswirksamen Flächen A _{u,s} [m²]	2392
Summe der abflusswirksamen Flächen A _{u,m} für V _{rrr} [m²]	1412
Summe Gebäudedachfläche A _{Dach} [m²]	1760
resultierender Spitzenabflussbeiwert Gebäudedachflächen C _{s,Dach} [-]	0,52
resultierender mittlerer Abflussbeiwert Gebäudedachflächen C _{m,Dach} [-]	0,33
Summe der Flächen außerhalb von Gebäuden A _{FaG} [m²]	6083
resultierender Spitzenabflussbeiwert C _{s,FaG} [-]	0,24
resultierender mittlerer Abflussbeiwert C _{m,FaG} [-]	0,13
Anteil der Dachfläche A _{Dach} /A _{ges} [%]	22,4

Bemerkungen:

Neubau Rudower Straße 184, Berlin

Stand: 24.03.23

Gesamtfläche: 7.843 m2

Berechnungsprogramm GRUNDSTÜCK.XLS 1.3.3 © 2017 - Institut für technisch-wissenschaftliche Hydrologie GmbH Engelbosteler Damm 22, 30167 Hannover, Tel.: 0511-97193-0, Fax: 0511-97193-77

Lizenznummer: DIN-1024-1064

Überflutungsnachweis nach DIN 1986-100 Nachweis mit Gleichung 20

Projekt:

WOHNBEBAUUNG und MUF, Rudower Straße 184 Berlin- Neukölln

Auftraggeber:

degewo AG Potsdamer Straße 60 10785 Berlin

Eingabe:

$$V_{\text{R\"{u}ck}} = [r_{(\text{D},30)} * (A_{\text{ges}}) - (r_{(\text{D},2)} * A_{\text{Dach}} * C_{\text{s,Dach}} + r_{(\text{D},2)} * A_{\text{FaG}} * C_{\text{s,FaG}})] * D * 60 * 10^{-7}]$$

gesamte befestigte Fläche des Grundstücks	A _{ges}	m ²	7.843
gesamte Gebäudedachfläche	A _{Dach}	m^2	1.760
Abflussbeiwert der Dachflächen	$C_{s,Dach}$	-	0,52
gesamte befestigte Fläche außerhalb von Gebäuden	A_{FaG}	m^2	6.083
Abflussbeiwert der Flächen außerhalb von Gebäuden	$C_{s,FaG}$	-	0,24
maßgebende Regendauer außerhalb von Gebäuden	D	min	5
maßgebende Regenspende für D und T = 2 Jahre	r _(D,2)	l/(s*ha)	263,3
maßgebende Regenspende für D und T = 30 Jahre	r _(D,30)	l/(s*ha)	523,3

Ergebnisse:

zurückzuhaltende Regenwassermenge	V _{Rück}	m ³	104,4
Abschätzung der Einstauhöhe auf ebener Fläche	h	m	0,02

Bemerkungen:

Die Einstauhöhe beträgt ohne Mulden ca. 2 cm.

Die Mulden weisen ein Volumen von 50 m3 auf. Das Rückhaltebecken hat ein Vol von 33 m3 Es verbleiben somit 16 m3 Wasser = 16 m3 / 7843 m2 = 0,002m

Der Überflutungsnachweis ist somit erbracht.

Potsdam, den 24.03.2023

Marcel Adam Landschaftsarchitekten BDLA

Weinbergstraße 24

14469 Potsdam

Berechnungsprogramm GRUNDSTÜCK.XLS 1.3.3 © 2017 - Institut für technisch-wissenschaftliche Hydrologie GmbH Engelbosteler Damm 22, 30167 Hannover, Tel.: 0511-97193-0, Fax: 0511-97193-77

Lizenznummer: DIN-1024-1064

Überflutungsnachweis nach DIN 1986-100 Nachweis mit Gleichung 21

Projekt:

WOHNBEBAUUNG und MUF, Rudower Straße 184

Berlin- Neukölln

Auftraggeber:

degewo AG Potsdamer Straße 60 10785 Berlin

Eingabe:

 $V_{R\ddot{u}ck}$ = [$r_{(D,30)}$ * A_{ges} / 10000 - Q_{voll})] * D * 60 * 10⁻³

gesamte befestigte Fläche des Grundstücks	A _{ges}	m^2	7.843
gesamte befestigte Fläche außerhalb von Gebäuden	A_{FaG}	m^2	6.083
Regenspende D = 5 min, T = 30 Jahre	r _(5,30)	l/(s*ha)	523,3
Regenspende D = 10 min, T = 30 Jahre	r _(10,30)	l/(s*ha)	360,0
Regenspende D = 15 min, T = 30 Jahre	r _(15,30)	l/(s*ha)	280,0
maximaler Abfluss der Grundleitung bei Vollfüllung	Q_{voll}	l/s	7,3

Ergebnisse:

Regenwassermenge für D = 5 min, T = 30 Jahre	$V_{\text{R\"uck}}, r_{(5,30)}$	m³	120,9
Regenwassermenge für D = 10 min, T = 30 Jahre	$V_{\text{R\"uck}}$, $r_{(10,30)}$	m³	165,0
Regenwassermenge für D = 15 min, T = 30 Jahre	$V_{\text{R\"uck}}, r_{(15,30)}$	m³	191,1
zurückzuhaltende Regenwassermenge	V _{Rück}	m ³	191,1
Abschätzung der Einstauhöhe auf ebener Fläche	h	m	0,03

Bemerkungen:

Die Einstauhöhe beträgt ohne Mulden ca. 3 cm.

Die Mulden weisen ein Volumen von 50 m3 auf.

Das Rückhaltebecken weist ein Volumen von 33 m3 auf

Somit müssen noch 103 m3 zurückgehalten werden. Die Einstauhöhe beträgt somit:

103 m3 / 7843 m2 = 0,01 m. Der Nachweis ist somit erbracht.

Potsdam, den 24.03.2023

Marcel Adam Landschaftsarchitekten BDLA

Weinbergstraße 24

14469 Potsdam

Berechnungsprogramm GRUNDSTÜCK.XLS 1.3.3 © 2017 - Institut für technisch-wissenschaftliche Hydrologie GmbH Engelbosteler Damm 22, 30167 Hannover, Tel.: 0511-97193-0, Fax: 0511-97193-77 Lizenznummer: DIN-1024-1064